

BAT32G439 Datasheet

High-performance 32-bit microcontrollers based on ARM[®] V8-M architecture STAR-MC1 processors

Built-in 256KB Flash, intergrated rich analog functions, timers and various communication interfaces

V0.1.4

Please note the following CMS IP policy

* China Micro Semicon Co., Ltd. (hereinafter referred to as the Company) has applied for patents and holds absolute legal rights and interests. The patent rights associated with the Company's MCUs or other products have not been authorized for use, and any company, organization, or individual who infringes the Company's patent rights through improper means will be subject to all possible legal actions taken by the Company to curb the infringement and to recover any damages suffered by the Company as a result of the infringement or any illegal benefits obtained by the infringer.

* The name and logo of Cmsemicon are registered trademarks of the Company.

* The Company reserves the right to further explain the reliability, functionality and design improvements of the products in the data sheet. However, the Company is not responsible for the use of the Specification Contents. The applications mentioned herein are for illustrative purposes only and the Company does not warrant and does not represent that these applications can be applied without further modification, nor does it recommend that its products be used in places that may cause harm to persons due to malfunction or other reasons. The Company's products are not authorized for use as critical components in lifesaving, life-sustaining devices or systems. The Company reserves the right to modify the products without prior notice. For the latest information, please visit the official website at www.mcu.com.cn.

Features

- Core:
 - ARM[®] V8-M architecture STAR-MC1 core, 3-stage pipelined 32-bit processor, balanced and optimized for performance and power consumption
 - > 8KB instruction cache, 4KB data cache
 - Memory protection unit supporting 8 regions
 - 8 interrupt priority levels support up to 240 interrupt requests
 - > Operating frequency: 32KHz to 128MHz
- Operations:
 - Built-in Digital Signal Processing Unit (DSP), supports SIMD's DSP-enhanced instructions
 - Floating-point unit (FPU) with tenfold performance improvement, supporting single-precision conversions, addition, subtraction, multiplication, totalization and square root operations
 - Hardware divider (integer division instructions delayed within 2 to 11 cycles) and single-cycle multiplier
- Digital filter:
 - Built-in a 2-channel 2nd order digital filter (IIR) that can be cascaded as the 4th order filter
- Memory:
 - 256KB flash memory with shared program and data storage
 - > 4KB dedicated data flash memory
 - 64KB SRAM memory +2KB backup SRAM with parity check
- Ultra low power operating environment:
 - Supply voltage range: 2.5V to 5.5V
 - Temperature range: -40°C to 105°C
 - Low power modes: sleep mode, deep sleep mode, and deep sleep mode with partial power down support
 - Operating power consumption: 100µA/MHz
 @128MHz
 - Power consumption in deep sleep mode: 150µA
 - Deep sleep mode + 32.768K + RTC operation: 155µA
 - Power consumption in deep sleep mode with partial power down: 20µA
- Power and reset management:
 - Built-in power-on reset (POR) circuit

Input/output ports:

- I/O ports: 83x
- Capable of N-channel open drain, internal pull-up, and internal pull-down switching
- Built-in key interrupt detection
- Built-in control circuit for clock output/buzzer output
- Debugging Interface:
 - Serial two-wire debugger (SWD)
 - JTAG port debugger
- Timers:
 - General-purpose PWM timer: 32bit 4channel GPT0 unit, 16bit 8-channel GPT1 unit (support BLDC-controlled PWM waveform generation, etc.)
 - > 16-bit timer: 8 channels x 2 units
 - 15-bit interval timer: 1x
 - Real time clock (RTC): 1x (with perpetual calendar, alarm function, and support a wide range of clock correction)
 - Watchdog timer: 2x (IWDT+WWDT)
 - SysTick timer: 1x (24bit, can select from F_{CLK} or F_{IL})

• Rich and flexible interfaces:

- 4-channel serial communication unit: each channel can be freely configured as 1channel standard UART, 2-channel SPI, or 2-channel simplified I²C.
- Standard SPI: 2 channels (support 8bit and 16bit)
- > QSPI: 1 channel, supports data encryption
- Standard I²C: 2 channels
- LIN bus: 1 channel
- CAN: 2 channels
- IrDA: 1 channel
- LCD bus interface: support interfaces 8080 and 6800

• Safety features:

- AES advanced encryption engine, support AES standard data encryption and decryption operations, the key length can be 128bit, 256bit
- True random number generator TRNG, generating 32-bit random numbers
- Conform to IEC/UL 60730 and EC61508 standards
- Report abnormal storage access errors

 Built-in voltage detection (LVD) circuit (settable threshold voltage)

• Clock management:

- Built-in a high-speed oscillator with accuracy of ±1%, supporting 2MHz to 64MHz system clocks and peripheral module operation clocks
- Built-in a PLL with a high-precision oscillator can provide 24MHz to 128MHz system clocks and peripheral module operation clocks.
- > Built-in a 30KHz/15KHz low-speed oscillator
- Support 1MHz to 20MHz external crystal oscillators, support off-oscillation monitoring
- Support 32.768KHz external crystal oscillator, which can be used to calibrate the on-chip high-speed oscillator.

• Enhanced DMA controller:

- Interrupt trigger start
- Selectable transfer modes (normal transfer mode, repeat transfer mode, block transfer mode and chain transfer mode)
- Transfer source/destination realm are selectable from the full address space range

• Linkage controller:

- It can link event signals to realize the linkage of peripheral functions
- > 163 input events and 33 trigger events

• Rich analog peripherals:

- 12-bit ADC converter unit 3, ADC0 8channel, ADC1 8-channel, ADC2 16channel, support a total of 32 external analog channels, conversion rate of 1.42Msps @ 64MHz, internally selectable PGA outputs as conversion channels, with temperature sensor(s), support for singlechannel conversion mode and 2, 3, 4channel scanning conversion mode
- 8-bit D/A converter, 2-channel analog output, real-time output function, output voltage range: 0~V_{DD}
- Comparator (CMP), built-in a four-channel comparator with selectable input sources, and the reference voltage can be selected from the external reference voltage or the internal reference voltage
- Programmable Gain Amplifier (PGA) with a built-in four-channel PGA with an external GND pin (can be used as differential mode)

- > Support SFR guard and avoid misoperation
- Support RAM parity check
- Support hardware CRC
- > A/D test function
- Digital output signal level detection function for input/output pins
- > 128-bit unique ID number
- Flash Level 2 protection in the debug mode (Level1: only perform flash full-scale erase, cannot be read or written. Level2: Emulator connection is invalid, cannot operate on flash.)
- Package:
 - Support 64Pin, 80Pin, and 100Pin packages.

1 Overview

1.1 Brief introduction

The BAT32G439 microcontroller, based on the high-performance ARM[®] V8-M architecture with a 32-bit RISC core, operates at up to 128MHz. It features high-speed embedded flash memory (up to 256KB for program/data storage) and up to 64KB of SRAM. The product integrates multiple standard interfaces including I²C, SPI, UART, IrDA, LIN, QSPI, CAN bus, and LCD bus. It includes a 12-bit A/D converter, temperature sensors, an 8-bit D/A converter, comparators, and a programmable gain amplifier. The 12-bit A/D converter can capture signals from external sensors and works in conjunction with the internal programmable gain amplifier, reducing system design costs. The 8-bit D/A converter is suitable for audio playback or power control. An integrated temperature sensor enables real-time environmental monitoring. The built-in comparators support both high-speed and low-speed modes, useful for motor control feedback and battery monitoring, respectively. Advanced timer modules include a SysTick timer, a 16-channel 16-bit timer, a 15-bit interval timer, a watchdog timer, and a real-time clock. It features a 4-channel 32-bit and an 8-channel 16-bit general-purpose PWM timer, supporting complex control functions for products like DC brushless motors. Safety features include an AES encryption engine, true random number generator, DSP, and FPU computation units, meeting requirements for IoT devices in real-time control and digital signal processing.

The BAT32G439 excels in low-power performance with support for sleep and deep sleep modes, consuming 100µA/MHz @128MHz during operation and only 20µA in deep sleep mode with power-down hold, making it ideal for battery-powered devices. Furthermore, it includes an event-link controller enabling direct hardware module connection without CPU intervention, enhancing response speed and extending battery life by reducing CPU activity.

These features make the BAT32G439 microcontroller series suitable for various applications including automotive body control, motor drive control, home appliances, mobile devices, and IoT devices, emphasizing high performance and low power consumption.

1.2 Product model list

BAT32G439 product list:

Pin count	Package	Product name
64 nins	64-pin plastic package LQFP	BAT32G439GK64FA
04 0113	(10X10mm, 0.5mm pitch)	B/(16204650)(04) //
90 pipe	80-pin plastic package LQFP	
ou pins	(12X12mm, 0.5mm pitch)	BAT32G439GK80FA
100 pins	100-pin plastic package LQFP (14X14mm, 0.5mm pitch)	BAT32G439GK100FA

FLASH, SRAM memory:

Flash	Dedicated data	CDAM		BAT32G439	
memory	Flash memory	SKAM	64 pins	80 pins	100 pins
256KB	4KB	64KB	BAT32G439GK64	BAT32G439GK80	BAT32G439GK100

1.3 Top view

1.3.1 BAT32G439GK64FA

• 64-pin plastic package LQFP (10x10mm, 0.5mm pitch)

Note1: The AV_{SS0}, AV_{SS1}, AV_{SS2} pins and the V_{SS0}, V_{SS2}, V_{SS3} pins must be at the same potential.

Note2: The voltage at each AV_{DD0}, AV_{DD1}, AV_{DD2} pin must be equal to the voltage at the V_{DD0}, V_{DD2}, V_{DD3} pins.

Note3: The AV_{DD0}, AV_{DD1}, AV_{DD2} pins and V_{DD0}, V_{DD2}, V_{DD3} pins must be connected to the power supply.

1.3.2 BAT32G439GK80FA

Note1: The AV_{SS0}, AV_{SS1}, AV_{SS2} pins and the V_{SS0}, V_{SS1}, V_{SS2}, V_{SS3}, V_{SS4} pins must be at the same potential.

Note2: The voltage at each AV_{DD0}, AV_{DD1}, AV_{DD2} pin must be equal to the voltage at the V_{DD0}, V_{DD1}, V_{DD2}, V_{DD3} pins.

Note3: The AV_{DD0}, AV_{DD1}, AV_{DD2} pins and V_{DD0}, V_{DD1}, V_{DD2}, V_{DD3} pins must be connected to the power supply.

1.3.3 BAT32G439GK100FA

100-pin plastic package LQFP (14x14mm, 0.5mm pitch)

- Note1: The AV_{SS0}, AV_{SS1}, AV_{SS2} pins and the V_{SS0}, V_{SS1}, V_{SS2}, V_{SS3}, V_{SS4} pins must be at the same potential.
- Note2: The voltage at each AV_{DD0}, AV_{DD1}, AV_{DD2} pin must be equal to the voltage at the V_{DD0}, V_{DD1}, V_{DD2}, V_{DD3} pins.
- Note3: The AV_{DD0}, AV_{DD1}, AV_{DD2} pins and V_{DD0}, V_{DD1}, V_{DD2}, V_{DD3} pins must be connected to the power supply.

2 Product Structure Diagram

Note: The above diagram shows the block diagram of 100-pin products, some functions of products below 100 pins are not supported.

3 Memory Map

FFFF_FFFFH			
E010_0000H	Reserved		
E00F_FFFFH	Star Dedicated Peripheral Area		
E000_0000H			
	Reserved	67FF_FFFFH	QSPI Register
67FF_FFFFH	QSPI	6400_0000H 63FF FFFFH	
6000_0000H	Reserved	6000_0000H	QSPT ROM Window (64MB)
4005_FFFFH			
4000_0000H	On-Chip Peripheral Area		
	Reserved		
2001_07FFH	Backup RAM		
2001_0000H 2000 FFFFH	(200)		
_	RAM (64KB)		
2000_0000H			
	Reserved		
0050_1FFFH	Data Flash		
0050 1000H	(4KB)		
	Reserved		
0003_FFFFH	Optical Boot Area (4KB,8KB,16KB)		
0000_0000H	User Flash (256KB)		

4 Pin Functions

4.1 **Port functions**

4.1.1 64pin products description

Name	I/O	After the reset is released	Multplexing function	Function
PA00			KR0/ANI000/VCIN00/VCIN22/PGA00IN	
PA01			KR1/ANI001/PGA00GND	-
PA02			KR2/ANI002/PGA10GND	-
PA03			KR4/ANI100/VCIN10/VCIN32/PGA10IN	Port A
PA04			KR5/ANI101/VCIN02/VCIN20/PGA11IN	An 11-bit input/output port,
PA05	I/O	Analog function	KR6/ANI102/VCIN12/VCIN30/PGA12IN	input or output in bit units.
PA06			ANI200/PGA12GND	Inputs can be set by
PA07			ANI201/PGA11GND	up resistors.
PA08			INTP0/ANI202	
PA09			INTP1/CTxD1/ANI203	
PA10			INTP2/CRxD1/ANI204	
PB00			INTP6/ANI106/TI10/TO10/GTIOC00A/TETRGC	
			INTP7/ANI212/VCOUT3/TI11/TO11/GTIOC00B/TI06/S	
FDUI			PIHS1_NSS/GTETRGD	
PB02			TI02/VCOUT0/ANI213/ANO0/TO06/SPIHS1_SCK	Port B
1 002			/GPTU	A 7-bit input/output port, can
PB03	I/O	Analog function	VCOUT1/ANI214/ANO1/TO02/SPIHS1_MOSI/GPTV	be designated as an input or output in bit units. The inputs
PB04			VCOUT2/ANI215/TO04/ADTRG2/SPIHS1_MISO	can be set by software using
1 004			/GPTW	internal pull-up resistors.
PB05			ANI107/VREF1/TI15/TO15/GTIOC03A/TI04/ADTRG1	
1 000			/GTETRGA	
PB06			TO03/ANI104/GTIOC17A/GTETRGC	
PC00			DBD0/GTIOC15B/GTOVLO	Port C
PC01	I/O	Input port	DBD1/GTIOC15A/GTOVUP	A 11-bit input/output port, can be designated as an input or output in bit units. The inputs can be set by software using internal pull-

(2/3)

Name	I/O	After the reset is released	Multplexing function	Function
PC02			DBD2/GTIOC14B/GTOULO	
PC03			DBD3/GTIOC14A/GTOUUP	
PC04			DBD4/GTIOC12B/GTOWLO	
PC05			DBD5/GTIOC12A/GTOWUP	
PC06			DBD6/GTIOC11B/GTOVLO	
PC07			DBD7/GTIOC11A/GTOVUP	
PC08			GTIOC10B/GTOULO	
PC09			GTIOC10A/GTOUUP	
PC10			INTP4/GTETRGC	
PD00			SCLA0/TI12/TO12/GTIOC01A/TI00/SCL21/SCLK21/Rx	
T DOU			D2/SDI20/SDA20	
PD01			SDAA0/TI11/TO11/GTIOC00B/SDI21/SDA21/TxD2/SD	
1 001			O20	
PD02			TI10/TO10/GTIOC00A/SDO21/SCLK20/SPIHS1_SCK	
PD03			INTP3/CLKBUZ1/SS10/SDO11/GTETRGD	A 10-bit input/output port,
PD04			GTIOC02B/TxD1/SDO10/SDI11/SDA11/GTOWLO	can be designated as an
DD05	1/0	Input port	QSSL/GTIOC02A/RxD1/SDI10/SDA10/SCL11/SCLK11	The inputs can be set by
FD05			/GTOWUP	software using internal pull-
PD06			QIO0/TxD0/SDO00/TO00/SDI01/SDA01/GTETRGC	up resistors.
PD07			SCLK00/SCL00/QIO1/TI00/TI06/SDO01/GTETRGB	
PD08			RxD0/SDI00/QIO2/SDA00/SCL01/SCLK01/GTETRGA	
DD00			SPIHS0_NSS/QIO3/TO01/TI14/TO14/GTIOC03B	
FD09			/ADST0/SS00/SDO11	

(3/3)

Name	I/O	After the reset is released	Multplexing function	Function	
PE00			QSPCLK/TI15/TO15/GTIOC03A/TxD1/SDO10/SDI11 /SDA11		
PE01			NJTRST/GPIO/RTC1HZ/GTETRGA		
PE02			JTCK/SWCLK/GPIO/ADST2/GTETRGB	Port E	
PE03			JTMS/SWDIO/GPIO	A 10-bit input/output port, can	
PE05	I/O	Input port	JTDO/TRACESWO/GPIO/CLKBUZ0	be designated as an input or output in bit units. The inputs	
PE06			JTDI/GPIO/GTIOC02A/TI17/TO17/ADST0/SS00	can be set by software using	
PE07			GTIOC16A/DBWRB/GTOWUP	internal pull-up resistors.	
PE08				GTIOC16B/DBRDB/GTOWLO	
PE09			INTP5/DBA0/GTETRGD		
PH00	Ι		RESET	Port H	
PH01		I/O	X1	A 3-bit input/output port, can be designated as an input or	
PH02	I/O		X2/EXCLK	output in bit units. The inputs can be set by software using internal pull- up resistors.	

Remark:

- Each pin is set to digital or analog (capable of being set in bits) via Port Mode Control Register x (PMCx).
- 2. For the description of the multiplexing function, refer to "4.2 Port Multiplexing Function".

4.1.2 80pin products description

Name	I/O	After the reset is released	Multplexing function	Function
PA00			KR0/ANI000/VCIN00/VCIN22/PGA00IN	
PA01			KR1/ANI001/PGA00GND	
PA02			KR2/ANI002/PGA10GND	
PA03			KR4/ANI100VCIN10/VCIN32/PGA10IN	-
PA04			KR5/ANI101/VCIN02/VCIN20/PGA11IN	Dort A
PA05			KR6/ANI102/VCIN12/VCIN30/PGA12IN	A 14-bit input/output port,
PA06			ANI200/PGA12GND	can be designated as an
PA07	1/0	Analog function	ANI201/PGA11GND	The inputs can be set by
PA08			INTP0/ANI202	software using internal pull-
PA09			INTP1/CTxD1/ANI203	up resistors.
PA10			INTP2/CRxD1/ANI204	
PA11			KR3/ANI003	
PA12			KR7/ANI103	
PA13			ANI205	
PB00			INTP6/ANI106//TI10/TO10/GTIOC00A/TETRGC	
			INTP7/ANI212/VCOUT3/TI11/TO11/GTIOC00B/TI06	
PB01			/SPIHS1_NSS/GTETRGD	
DDOO			TI02/VCOUT0/ANI213/ANO0/TO06/SPIHS1_SCK	
PB02			/GPTU	
PB03			VCOUT1/ANI214/ANO1/TO02/SPIHS1_MOSI/GPTV	Port B
			VCOUT2/ANI215/TO04/ADTRG2/SPIHS1_MISO	A 10-bit input/output port, can be designated as an
РВ04	I/O	Analog	/GPTW	input or output in bit units.
DDOF		Turiction	ANI107/VREF1/TI15/TO15/GTIOC03A/TI04/ADTRG1	The inputs can be set by
PDUD			/GTETRGA	up resistors.
PB06			TO03/ANI104/GTIOC17A/GTETRGC	
PB07			SS30/ANI105/TI16/TO16/GTIOC02B/GTETRGD	
			ANI007/VREF0/TI14/TO14/GTIOC03B/ADTRG0	
PB00			/GTETRGB	
PB09		ANI208		

(2/3)

Name	I/O	After the reset is released	Multplexing function	Function
PC00			DBD0/GTIOC15B/GTOVLO	
PC01			DBD1/GTIOC15A/GTOVUP	
PC02			DBD2/GTIOC14B/GTOULO	
PC03			DBD3/GTIOC14A/GTOUUP	Port C
PC04			DBD4/GTIOC12B/GTOWLO	A 12-bit input/output port,
PC05	1/0	Input port	DBD5/GTIOC12A/GTOWUP	can be designated as an
PC06	1/0	input port	DBD6/GTIOC11B/GTOVLO	The inputs can be set by
PC07			DBD7/GTIOC11A/GTOVUP	software using internal pull-
PC08			GTIOC10B/GTOULO	up resistors.
PC09			GTIOC10A/GTOUUP	
PC10			INTP4/GTETRGC	
PC11			TI16/TO16/GTIOC03A/SPIHS1_NSS	
PD00			SCLA0/TI12/TO12/GTIOC01A/TI00/SCL21/SCLK21	
FD00			/RxD2/SDI20/SDA20	
			SDAA0/TI11/TO11/GTIOC00B/SDI21/SDA21/TxD2	
FD01			/SDO20	Port D
PD02	I/O		TI10/TO10/GTIOC00A/SDO21/SCLK20/SPIHS1_SCK	can be designated as an
PD03		Input port	INTP3/CLKBUZ1	input or output in bit units.
1 003			SS10/SDO11/GTETRGD	The inputs can be set by
PD04			GTIOC02B/TxD1/SDO10/SDI11/SDA11/GTOWLO	up resistors.
PD05			QSSL/GTIOC02A/RxD1/SDI10/SDA10/SCL11/SCLK11	
FD00			/GTOWUP	
PD06			QIO0/TxD0/SDO00/TO00/SDI01/SDA01/GTETRGC	

(3/3)

Name	I/O	After the reset is released	Multplexing function	Function
PD07			SCLK00/SCL00/QIO1/TI00/TI06/SDO01/GTETRGB	
PD08			RxD0/SDI00/QIO2/SDA00/SCL01/SCLK01/GTETRGA	
DD 00			SPIHS0_NSS/QIO3/TO01/TI14/TO14/GTIOC03B	
PD09			/ADST0/SS00/SDO11	
0040			SCL31/SCLK31/TI03/TI14/TO14/GTIOC02A/ADTRG1	
PD10			/RxD2/SDI20/SDA20/SPIHS1_MISO	
			TI13/SDI31/TO13/SDA31 /GTIOC01B/ TO00/ ADTRG2	
PDTT			/TxD2/SDO20/SPIHS1_MOSI	
0040			SPIHS0_MOSI/GTIOC00A/TO04/TI01/SCLK10/SCL10	
PDIZ			/GTOUUP	
DEOO			QSPCLK/TI15/TO15/GTIOC03A/TxD1/SDO10/SDI11	
FEUU			/SDA11	
PE01			NJTRST/GPIO/RTC1HZ/GTETRGA	Port F
PE02			JTCK/SWCLK/GPIO/ADST2/GTETRGB	A 10-bit input/output port,
PE03			JTMS/SWDIO/GPIO	can be designated as an
PE05	1/0	input port	JTDO/TRACESWO/GPIO/CLKBUZ0	The inputs can be set by
PE06			JTDI/GPIO/GTIOC02A/TI17/TO17/ADST0/SS00	software using internal pull-
PE07			GTIOC16A/DBWRB/GTOWUP	up resistors.
PE08			GTIOC16B/DBRDB/GTOWLO	
PE09			INTP5/DBA0/GTETRGD	
PH00	I		RESET	Port H
PH01			X1	A 5-bit input/output port, can
PH02	1	Input port	X2/EXCLK	output in bit units. The
PH03	1/0		XT1	inputs can be set by
PH04			XT2/EXCLKS	up resistors.

Remark:

- Each pin is set to digital or analog (capable of being set in bits) via Port Mode Control Register x (PMCx).
- 2. For the description of the multiplexing function, refer to "4.2 Port Multiplexing Function".

4.1.3 100pin products description

Nama	1/0	After the reset	Multiple view from the p	(,,,,
Name	1/0	is released		Function
PA00			KR0/ANI000/VCIN00/VCIN22/PGA00IN	
PA01			KR1/ANI001/PGA00GND	
PA02			KR2/ANI002/PGA10GND	_
PA03			KR4/ANI100VCIN10/VCIN32/PGA10IN	_
PA04			KR5/ANI101/VCIN02/VCIN20/PGA11IN	
PA05			KR6/ANI102/VCIN12/VCIN30/PGA12IN	Port A
PA06			ANI200/PGA12GND	A 16-bit input/output port,
PA07	1/0	Analog function	ANI201/PGA11GND	can be designated as an
PA08	1/0	Analog function	INTP0/ANI202	The inputs can be set by
PA09			INTP1/CTxD1/ANI203	software using internal pull-
PA10	-		INTP2/CRxD1/ANI204	up resistors.
PA11			KR3/ANI003	
PA12			KR7/ANI103	
PA13			ANI205	
PA14			ANI206	
PA15			ANI207	
PB00			INTP6/ANI106/TI10/TO10/GTIOC00A/TETRGC	
DD 04	INTP7/ANI212/VCOUT3/TI11/TO11/GTIOC00B/TI06 /SPIHS1_NSS/GTETRGD			
PB01			/SPIHS1_NSS/GTETRGD	
DDOO			TI02/VCOUT0/ANI213/ANO0/TO06/SPIHS1_SCK	
PB02			/GPTU	
PB03			VCOUT1/ANI214/ANO1/TO02/SPIHS1_MOSI/GPTV	Port B
5504			VCOUT2/ANI215/TO04/ADTRG2/SPIHS1_MISO	A 16-bit input/output port,
PB04			/GPTW	can be designated as an
DDoc	1/0	Analog function	ANI107/VREF1/TI15/TO15/GTIOC03A/TI04/ADTRG1	The inputs can be set by
PB05	_		/GTETRGA	software using internal pull-
PB06			TO03/ANI104/GTIOC17A/GTETRGC	up resistors.
PB07			SS30/ANI105/TI16/TO16/GTIOC02B/GTETRGD	
DDOO]		ANI007/VREF0/TI14/TO14/GTIOC03B/ADTRG0	
5R08			/GTETRGB	
PB09	1		ANI208	
PB10		SDAA1/ANI211	1	

(2/4)

Name	I/O	After the reset is released	Multplexing function	Function
PB11			SCLA1/ANI210	
PB12			ANI209	
PB13			SCLK30/SCL30/ANI004/TO04/SDO21/GPTU	
PB14			TxD3/SDO30/ANI005/TI04/SDI21/SDA21/GPTV	
PB15			RxD3/SDI30/SDA30/ANI006/SCL21/SCLK21/GPTW	
PC00			DBD0/GTIOC15B/GTOVLO	
PC01			DBD1/GTIOC15A/GTOVUP	
PC02			DBD2/GTIOC14B/GTOULO	
PC03			DBD3/GTIOC14A/GTOUUP	
PC04			DBD4/GTIOC12B/GTOWLO	
PC05			DBD5/GTIOC12A/GTOWUP	Port C
PC06			DBD6/GTIOC11B/GTOVLO	A 16-bit input/output port, can be designated as an
PC07	I/O	Input port	DBD7/GTIOC11A/GTOVUP	input or output in bit units.
PC08			GTIOC10B/GTOULO	The inputs can be set by software using internal pull-
PC09			GTIOC10A/GTOUUP	up resistors.
PC10			INTP4/GTETRGC	
PC11			TI16/TO16/GTIOC03A/SPIHS1_NSS	
PC12			GTIOC13B/CTxD0/TO02	
PC13			CRxD0/GTIOC13A/TO04/ADTRG0	
PC14			SS20/TO07/TI17/TO17/GTIOC03B	

(3/4)

Name	I/O	After the reset is released	Multplexing function	Function
DOAL			TI07/SDO31/TI15/TO15/GTIOC02B/ADTRG0	
PC15			/SCLK20/SPIHS1_SCK	
DD00			SCLA0/TI12/TO12/GTIOC01A/TI00/SCL21/SCLK21	
PD00			/RxD2/SDI20/SDA20	
DD04			SDAA0	
PD01			TI11/TO11/GTIOC00B/SDI21/SDA21/TxD2/SDO20	
PD02			TI10/TO10/GTIOC00A/SDO21/SCLK20/SPIHS1_SCK	
PD03			INTP3/CLKBUZ1/SS10/SDO11/GTETRGD	
PD04			GTIOC02B/TxD1/SDO10/SDI11/SDA11/GTOWLO	
DD05			QSSL/GTIOC02A/RxD1/SDI10/SDA10/SCL11/SCLK11/	
PD05			GTOWUP	
PD06			QIO0/TxD0/SDO00/TO00/SDI01/SDA01/GTETRGC	Port D
PD07			SCLK00/SCL00/QIO1/TI00/TI06/SDO01/GTETRGB	A 16-bit input/output port, can be designated as an
PD08	I/O	Input port	RxD0/SDI00/QIO2/SDA00/SCL01/SCLK01/GTETRGA	input or output in bit units.
DD00			SPIHS0_NSS/QIO3/TO01/TI14/TO14/GTIOC03B/ADS	The inputs can be set by
FD09			T0/SS00/SDO11	up resistors.
			SCL31/SCLK31/TI03/TI14/TO14/GTIOC02A/ADTRG1	
FDIU			/RxD2/SDI20/SDA20/SPIHS1_MISO	
			TI13/SDI31/TO13/SDA31/GTIOC01B/TO00/ADTRG2	
FUIT			/TxD2/SDO20/SPIHS1_MOSI	
DD12			SPIHS0_MOSI/GTIOC00A/TO04/TI01/SCLK10/SCL10	
FDIZ			/GTOUUP	
PD13			GTIOC01B/SCLK10/SCL10/GTOVLO	
PD14			SPIHS0_SCK/GTIOC01A/TO06/GTOVUP	
PD15			SPIHS0_MISO/GTIOC00B/TO02/GTOULO	

				(4/4)	
Name	I/O	After the reset is released	Multplexing function	Function	
PE00			QSPCLK/TI15/TO15/GTIOC03A/TxD1/SDO10/SDI11 /SDA11		
PE01			NJTRST/GPIO/RTC1HZ/GTETRGA		
PE02			JTCK/SWCLK/GPIO/ADST2/GTETRGB	1	
PE03			JTMS/SWDIO/GPIO		
PE04				Port F	
PE05			JTDO/TRACESWO/GPIO/CLKBUZ0	A 14-bit input/output port,	
PE06	1/0	Input port	JTDI/GPIO/GTIOC02A/TI17/TO17/ADST0/SS00	can be designated as an input or output in bit units. The inputs can be set by software using internal pull-	
PE07	1/0		GTIOC16A/DBWRB/GTOWUP		
PE08			GTIOC16B/DBRDB/GTOWLO		
PE09	1		INTP5/DBA0/GTETRGD	up resistors.	
PE10			GTIOC17A/TO00/GTETRGA		
PE11			GTIOC17B/TO06/GTETRGB]	
DE12			TI05/TI16/TO16/GTIOC02B/TI01/RxD1/SDI10/SDA10		
PE12	_		/SCL11/SCLK11		
PE13			TO05/TI17/TO17/GTIOC02A/SS10		
PH00	I		RESET	Port H A 5-bit input/output port, can be designated as an input or	
PH01		Input port	X1		
PH02	I/O		X2/EXCLK	output in bit units. The inputs can be set by software using internal pull- up resistors.	
PH03			XT1		
PH04			XT2/EXCLKS		

Remark:

- 1. Each pin is set to digital or analog (capable of being set in bits) via Port Mode Control Register x (PMCx).
- 2. For the description of the multiplexing function, refer to "4.2 Port Multiplexing Function".

4.2 Port multiplexing function

		(1/2)		
Name	I/O	Function		
ANI000~ANI007, ANI100~ANI107				
ANI200~ANI215	1	A/D converter analog inputs		
ANO0, ANO1	0	D/A converter outputs		
		External interrupt request inputs		
INTP0~INTP7	I	Designation of active edges: rising edge, falling edge, double		
		edges		
VCIN00~VCIN03	I	Comparator 0 analog voltage inputs		
VCIN10~VCIN13	I	Comparator 1 analog voltage inputs		
VCIN20~VCIN23	I	Comparator 2 analog voltage inputs		
VCIN30~VCIN33	I	Comparator 3 analog voltage inputs		
VREF0	I	Comparator 0 reference voltage inputs		
VREF1	I	Comparator 1 reference voltage inputs		
VCOUT0~VCOUT3	0	Comparator 0 to 3 outputs		
PGA00IN, PGA10IN~PGA12IN	I	PGA00, PGA10 to PGA12 inputs		
PGA0GND, PGA10GND~PGA12GND	I	PGA00, PGA10 to PGA12 reference inputs		
KR0~KR7	I	Key interrupt inputs		
CLKBUZ0, CLKBUZ1	0	Clock outputs/buzzer outputs		
RTC1HZ	0	Correction clock (1Hz) output for real-time clock		
	I	A system reset input that is active low and must be connected		
RESETB		to V_{DD} either directly or through a resistor when an external		
		reset is not used.		
CRxD0, CRxD1, CRxD2	I	CAN serial data inputs		
CTxD0, CTxD1, CTxD2	0	CAN serial data outputs		
		Serial data inputs of serial interfaces UART0, UART1, UART2,		
RXD0~RXD3		and UART3		
	0	Serial data outputs of serial interfaces UART0, UART1,		
1xD0~1xD3	0	UART2, and UART3		
SCL00, SCL01, SCL10, SCL11	<u> </u>	Serial clock outputs of serial interfaces IIC00, IIC01, IIC10,		
SCL20, SCL21, SCL30, SCL31	0	IIC11, IIC20, IIC21, IIC30, and IIC31		
SDA00, SDA01, SDA10, SDA11	1/0	Serial data inputs/outputs of serial interfaces IIC00, IIC01,		
SDA20, SDA21, SDA30, SDA31	1/0	IIC10, IIC11, IIC20, IIC21, IIC30, and IIC31		
SCLK00, SCLK01, SCLK10, SCLK11	1/0	Serial clock inputs/outputs of serial interfaces SSPI00, SSPI01,		
SCLK20, SCLK21, SCLK30, SCLK31	I/O	SSPI10, SSPI11, SSPI20, SSPI21, SSPI30, and SSPI31		
SDI00, SDI01, SDI10, SDI11	I	Serial data inputs of serial interfaces SSPI00, SSPI01,		
SDI20, SDI21, SDI30, SDI31		SSPI10, SSPI11, SSPI20, SSPI21, SSPI30, and SSPI31		
SS00	I	Serial interface chip select inputs of SSPI00		
SDO00, SDO01, SDO10, SDO11	0	Serial data outputs of SSPI00, SSPI01, SSPI10, SSPI11,		
SDO20, SDO21, SDO30, SDO31	0	SSPI20, SSPI21, SSPI30, and SSPI31		
DBD0~DBD7	I/O	LCD bus data inputs/outputs		

www.mcu.com.cn

DBRDB	0	LCD bus read enable outputs
DBWRB	0	LCD bus write enable outputs
SCLA0, SCLA1	I/O	Clock inputs/outputs for serial interfaces IICA0 and IICA1
SDAA0, SDAA1	I/O	Serial data inputs/outputs for serial interfaces IICA0 and IICA1

(2/2)

Name	I/O	Function		
SPIHS0_NSS	I	Chip select inputs for serial interface SPIHS0		
SPIHS0_SCK	I/O	Serial clock inputs/outputs for serial interface SPIHS0		
SPIHS0_MISO	I/O	Serial data inputs/outputs for serial interface SPIHS0		
SPIHS0_MOSI	I/O	Serial data inputs/outputs for serial interface SPIHS0		
SPIHS1_NSS	I	Chip select inputs for serial interface SPIHS1		
SPIHS1_SCK	I/O	Serial clock inputs/outputs for serial interface SPIHS1		
SPIHS1_MISO	I/O	Serial data inputs/outputs for serial interface SPIHS1		
SPIHS1_MOSI	I/O	Serial data inputs/outputs for serial interface SPIHS1		
TI00~TI07	I	External count clock/capture trigger inputs for 16-bit Timer80		
TO00~TO07	0	Timer outputs for 16-bit Timer80		
TI10~TI17	I	External count clock/capture trigger inputs for 16-bit Timer81		
TO10~TO17	0	Timer outputs for 16-bit Timer81		
GTIOCA00~GTIOCA03,	1/0	Input and output pipe for 22 bit general purpage DMAA timer		
GTIOCB00~GTIOCB03	1/0	Input and output pins for 32-bit general-purpose PWW timer		
GTIOCA10~GTIOCA17,	1/0	Input and output pins for 16 bit general purpose PW/M timer		
GTIOCB10~GTIOCB17	1/0			
QIO0~QIO3	I/O	QSPI data I/O		
QSPCLK	0	QSPI clock outputs		
QSSL	0	QSPI slave selection		
X1, X2		Connect the resonator used for the main system clock.		
EXCLK	I	External clock inputs for main system clock		
XT1, XT2	—	Connect the resonator used for the subsystem clock.		
EXCLKS	I	External clock inputs for subsystem clock		
VDD0~VDD3	—	Power supply pin		
VSS0~VSS4	—	Ground pin		
AVDD0~AVDD2		Analog power pin		
AVSS0~AVSS2	_	Analog ground level pin		
NJTRST	I	JTAG-reset pin		
ЈТСК	I	JTAG-clock pin		
JTMS	I	JTAG-TMS signal pin		
JTDO	0	JTAG-data output pin		
JTDI	I	JTAG-data input pin		
SWDIO	I/O	SWD-data interface		
SWCLK		SWD-clock interface		
TRACESWO	0	SWD-TRACE interface		

Remark: As a countermeasure against noise and lockup, a bypass capacitor (about 0.1μ F) must be connected between V_{DD} and V_{SS} at the shortest possible distance and with thicker wiring.

5 Function Summary

5.1 STAR-MC1 core with ARM[®] V8-M architecture

This product is equipped with the STAR-MC1 processor, based on ARM® V8-M architecture developed by ARM China. Optimized for IoT devices, the Star processor achieves efficient computation through balanced performance and power consumption configurations. It fully meets IoT device requirements for real-time control, digital signal processing, secure operation, ultra-low power consumption, and compact footprint. For more details, please refer to ARM documentation.

The STAR-MC1 processor integrated in this product includes a Memory Protection Unit (MPU) supporting 8 regions for hardware-managed memory protection, controlling access permissions. It also features CoreSight for debugging and tracing, supporting JTAG or 2-wire Serial Wire Debug (SWD) connections, multi-processor support, and real-time tracing. Users benefit from enhanced debugging capabilities, optimized exception handling, and faster bug localization.

The BAT32G439 utilizes an embedded ARM core, ensuring compatibility with all ARM tools and software.

5.2 Memory

5.2.1 Flash memory

The BAT32G439 has built-in flash memory that can be programmed, erased, and rewritten. It has the following functions:

- > Programs and data share 256K storage.
- > 4KB dedicated data Flash memory.
- Support page erase, the size of each page is 512byte, erase time is 4ms.
- Support byte/half-word/word (32bit) programming, and programming time is 30µs.

5.2.2 SRAM

The BAT32G439 contains 64KB of embedded SRAM.

5.3 Enhanced DMA controller

It has a built-in enhanced DMA (Direct Memory Access) controller that enables data transfer between memories without using the CPU.

- DMA can be started via peripheral function interrupts, enabling real-time control through communication, timers, and A/D.
- The transfer source/target field is optional for the full address space range (when the flash field is used as the target address, flash needs to be preset as the programming mode).
- Support 4 modes (normal transfer mode, repeat transfer mode, block transfer mode and chain transfer mode).

5.4 Linkage controller

The linkage controller links the output events by each peripheral function with the peripheral function trigger sources. This enables collaborative operation between peripheral functions without using the CPU.

The linkage controller has the following functions:

- > It can link event signals together to realize the linkage of peripheral functions.
- > There are 163 types of event input and 33 types of event triggering.

5.5 Clock generation and startup

A clock generation circuit is a circuit that generates a clock to the CPU and peripheral hardware. There are three types of system clocks and clock oscillation circuits.

5.5.1 Main system clock

- X1 oscillation circuit: The resonator can be connected to pins (X1 and X2) to generate a clock oscillation of 1~20MHz, and the oscillation can be stopped by executing a deep sleep command or setting MSTOP.
- High-speed on-chip oscillator (high-speed OCO): Oscillation can be performed by selecting the frequency by the option byte. After released, the CPU starts running at this high-speed on-chip oscillator clock by default. Oscillation can be stopped by executing a deep sleep command or setting the HIOSTOP bit. The frequency set by the option byte can be changed through the frequency selection register of the high-speed on-chip oscillator. The maximum frequency is 64MHz with an accuracy ±1.0%.
- Input external clock from pin (X2): (1~20MHz), and the input of the external main system clock can be invalidated by executing a deep sleep command or setting the MSTOP bit.

5.5.2 Subsystem clock

- XT1 oscillator circuit: A 32.768kHz clock oscillation can be generated by connecting a 32.768kHz resonator to the pins (XT1 and XT2), and the oscillation can be stopped by setting the XTSTOP bit.
- An external clock input by the pin (XT2): 32.768kHz, and the external clock input can be disabled by setting the XTSTOP bit.

5.5.3 Low-speed on-chip oscillator clock

- Low-speed on-chip oscillator (low-speed OCO): generate a 15kHz (TYP.) clock oscillation. The lowspeed on-chip oscillator clock cannot be used as the CPU clock. Only the following peripheral hardware can run off the low-speed on-chip oscillator clock.
- Watchdog timer (WWDT/IWDT)
- Real time clock (RTC)
- > 15-bit interval timer

5.5.4 PLL clock

PLL: can be used as a system clock, the source clock of PLL can be selected from a external clock or an on-chip high-speed oscillator clock.

5.6 **Power management**

5.6.1 Power supply mode

V_{DD}: External power supply, voltage range: 2.5 to 5.5V.

5.6.2 Power-on reset

The power-on reset circuit (POR) has the following functions.

- An internal reset signal is generated when power is applied. If the MCU voltage (V_{DD}) is greater than the detection voltage (V_{POR}), the reset is released. However, the reset state must be maintained by a voltage detection circuit or an external reset until the operating voltage range is reached.
- Compare the MCU voltage (V_{DD}) and the detection voltage (V_{POR}), when V_{DD} < V_{POR}, an internal reset signal is generated. However, when the power supply drops, it must be shifted to the deep sleep mode or set to the reset state by the voltage detection circuit or external reset before falling below the operating voltage range. If operation is to be restarted, it must be verified that the power supply voltage has returned to within the operating voltage range.

5.6.3 Voltage detection

The voltage detection circuit sets the operating mode and detection voltage (V_{LVDH} , V_{LVDL} , V_{LVD}) via option bytes. The voltage detection (LVD) circuit has the following functions:

- Compare the MCU voltage (V_{DD}) and the detection voltage (V_{LVDH}, V_{LVDL}, V_{LVD}) and generate an internal reset or interrupt request signal.
- > The detection voltage of the MCU voltage (VLVDH, VLVDL, VLVD) can be selected by the option bytes.
- Can run in deep sleep mode.
- When the power supply rises, it must be maintained in the reset state by voltage detection circuit or an external reset before reaching the operating voltage range. When the power supply drops, it must be switched to deep sleep mode before it is less than the operating voltage range, or set to reset by voltage detection circuit or external reset.
- > The operating voltage range varies depending on the setting of the user option bytes.

5.7 Low-power mode

The BAT32G439 supports two low-power modes to achieve the best compromise between low power consumption, short start-up time, and available wake-up sources:

- Sleep mode: Sleep mode is entered by executing the sleep instruction. Sleep mode is a mode to stop the CPU running clock. If the high-speed system clock oscillator circuit or the high-speed on-chip oscillator is oscillating before the sleep mode is set, each clock continues to oscillate. Although this mode does not allow the operating current to be reduced to the level of deep sleep mode, it is an effective mode when processing is to be restarted immediately by an interrupt request or when frequent intermittent operation is to be performed.
- Deep sleep mode: Deep sleep mode is entered by executing the deep sleep instruction. Deep sleep mode is a mode that stops the oscillation of the high-speed system clock oscillator and high-speed on-chip oscillator and stops the whole system. The operating current of the chip can be greatly reduced. Since the deep sleep mode can be canceled by an interrupt request, intermittent operation is also possible. However, in the case of the X1 clock, since it is necessary to wait for the oscillation to stabilize when releasing the deep sleep mode, it is necessary to select the sleep mode if it is necessary to start processing immediately by an interrupt request.
- Deep sleep mode with partial power down: A deep sleep mode that further reduces power consumption by shutting down part of the peripheral power supply in the deep sleep mode. The deep sleep mode with partial power down is allowed by a pre-configured PMUKEY instruction and executed by a deep sleep instruction. In this mode, PMUCTL can be used to control whether the CPU, CacheRAM, RAM0, RAM1 and Flash are turned off when the oscillator stops oscillating, and most of the peripheral modules will be turned off. Partial power-down deep sleep mode can be released by external interrupts, key-in interrupts, RTC interrupts, 15-bit interval interrupts and WDT/IWDT interrupt requests, so intermittent operation is also possible.

In any of the modes except the deep sleep mode with partial power down, the registers, flags and data memory all remain as they were before being set to standby mode, and the state of the output latches and output buffers of the input/output ports are also maintained. Partial power-down deep sleep mode requires reinitialization of peripheral module functions when it is released.

5.8 Reset function

The following seven methods generate a reset signal.

- (1) An external reset is input via the RESETB pin.
- (2) The program utilizes watchdog timers for internal reset as a means of detecting and responding to program instability.
- (3) An internal reset is generated by comparing the supply voltage and the detection voltage of the power-on reset (POR) circuit.
- (4) An internal reset is generated by comparing the supply voltage and the detection voltage of the voltage detection circuit (LVD).
- (5) An internal reset occurs due to a RAM parity error.
- (6) An internal reset occurred due to access to illegal memory.
- (7) Software reset

The internal reset is the same as the external reset, and after the reset signal is generated, the procedure is executed from the addresses written in addresses 0000H and 0001H.

5.9 Interrupt function

The processor has a built-in Nested Vector Interrupt Controller (NVIC) that supports up to 240 interrupt request (IRQ) inputs, one non-maskable interrupt (NMI) input, and multiple internal exceptions. In addition, the processor supports multiple internal exceptions.

The product can support up to 202 maskable interrupt sources and one non-maskable interrupt source. The actual number of interrupt sources varies by product.

		64 pins	80 pins	100 pins
Maskable	External	16	16	16
interrupt	Internal	165	175	185

5.10 Real-time clock (RTC)

Functions of real-time clock (RTC) are show as below.

- Having counters of year, month, week, day, hour, minute, and second
- Constant-period interrupt function (period: 0.5 seconds, 1 second, 1 minute, 1 hour, 1 day, 1 month)
- > Alarm interrupt function (alarm: week, hour, minute)
- Pin output function of 1 Hz
- Support prescalers of subsystem clock or main system clock as RTC operation clocks.
- > Real-time clock interrupt signals (INTRTC) can be used to wake up in deep sleep mode.
- Watch error correction with high accuracy

Year, month, week, day, hour, minute and second counters are only available if the subsystem clock (32.768kHz) or main system clock prescaler is selected as the RTC operation clock. When the low-speed onchip oscillator clock (15kHz) is selected, only the constant-period interrupt function can be used.

5.11 Watchdog timer

The BAT32G439 is equipped with two watchdog timers, one for the normal watchdog timer WWDT, one for the independent watchdog timer IWDT, IWDT has the same function as WWDT, but its action is set by the option byte (00404H), WWDT is set to run by the count of the option byte (00400H), and the watchdog timer runs at a low speed on-chip oscillator clock (15KHz). The watchdog timer runs on a low-speed internal oscillator clock (15KHz).

The following are judged to be program instability:

- > When the watchdog timer counter overflows
- > When a bit operation instruction is executed on the watchdog timer enable register (WDTE)
- > When writing data other than "ACH" to the WDTE register
- > When writing data to the WDTE register during window closure

5.12 SysTick timer

This timer is exclusive to real-time operating systems, but can also be used as a standard decrement counter.

It is characterized by the generation of a maskable system interrupt when the 24-bit decrementing counter self-loading capacity counter reaches zero.

5.13 General-purpose PWM timer (GPT)

This product includes the GPT0 unit (with 4 channels of 32-bit each) and the GPT1 unit (with 8 channels of 16-bit each). It supports various PWM control waveform generation modes for DC brushless motors:

- (1) Sawtooth wave PWM output function
- (2) Sawtooth wave pulse mode output function
- (3) Triangle wave PWM mode 1 output function
- (4) Triangle wave PWM mode 2 output function
- (5) Triangle wave PWM mode 3 output function
- (6) Synchronous PWM output function
- (7) Three-phase complementary PWM output function
- (8) Sawtooth wave three-phase complementary PWM output function with automatic dead time setting
- (9) Triangle wave three-phase complementary PWM output function
- (10) Triangle wave three-phase complementary PWM output function with automatic dead time
- (11) Asymmetric triangle wave three-phase complementary PWM output function with automatic dead time

5.14 Timer8

This product has two built-in Timer8 units containing eight 16-bit timers, each of which is referred to as a "channel" and can be used as a stand-alone timer or in combination with multiple channels for advanced timer functions.

5.14.1 Independent channel operation function

The independent channel operation function is a function that allows you to use any channel independently of other channel operation modes. The independent channel operation function is used in the following modes:

- (1) Interval timer: It can be used as a reference timer for generating interrupts at fixed intervals (INTTM).
- (2) Square wave output: Whenever an INTTM interrupt is generated, a flip is triggered to output a 50% duty cycle square wave from the timer output pin (TO).
- (3) External event counter: Count the effective edge of the input signal of the timer input pin (TI) and can be used as an event counter to generate an interrupt if the specified number of times is reached.
- (4) Measurement of input pulse interval: The interval between input pulses is measured by starting counting at the effective edge of the input pulse signal at the timer input pin (TI) and capturing the count value at the effective edge of the next pulse.
- (5) High/low width measurement of input signal: Measure the high or low width of the input signal by starting counting on one edge of the input signal of the timer input pin (TI) and capturing the count value on the other edge.
- (6) Delay counter: Starts counting at the effective edge of the input signal at the timer input pin (TI) and generates an interrupt after an arbitrary delay period has elapsed.

5.14.2 Multi-channel linkage operation function

The multi-channel linkage operation function is a function that combines the master channel (the reference timer for the main control period) and the slave channel (the timer that follows the operation of the master channel). The multi-channel linkage function can be used in the following modes:

- 1) Single trigger pulse output: Two channels are used in pairs to generate a single trigger pulse that can arbitrarily set the output timing and pulse width.
- 2) PWM (Pulse Width Modulation) output: Two channels are used in pairs to generate pulses that can set the period and duty cycle arbitrarily.
- 3) Multiple PWM (Pulse Width Modulation) output: Up to 7 PWM signals of any duty cycle can be generated at a fixed period by expanding the PWM function and using one master channel and multiple slave channels.

5.14.3 8-bit timer operation function

The 8-bit timer operation function uses the 16-bit timer channel as the function of two 8-bit timer channels. (Only Channel 1 and Channel 3 can be used).

5.15 15-bit interval timer

This product has a built-in 15-bit interval timer that generates interrupts (INTIT) at any pre-set time interval, which can be used to wake up from deep sleep mode.

5.16 Clock output/buzzer output controller

The clock output controller is used to provide the clock to the peripheral IC, and the buzzer output controller is used to output the square wave of the buzzer frequency. The clock output or buzzer output is realized by dedicated pins.

5.17 Universal serial communication unit

This product has 4 built-in general-purpose serial communication units, each unit has up to 4 serial communication channels. It can realize standard SPI, simplified SPI, UART and simplified I²C communication functions. Take the 100pin product as an example, the functions of each channel are assigned as follows:

5.17.1 3-wire serial interface (SSPI)

Data is transmitted and received synchronously with the serial clock (SCK) output of the master device. This is a clock-synchronous communication interface that communicates using a total of three communication lines: one serial clock (SCK), one transmit serial data (SO), and one receive serial data (SI).

[Data transmission and reception]

- Data length of 7 to 16 bits
- > Phase control of data transmission and reception
- MSB/LSB first

[Clock control]

- Master or slave selection
- Phase control of input/output clock
- > Transfer cycles generated by prescalers and channel internal counters
- Maximum transfer rate
 - Master communication: Max. FCLK/2
 - Slave communication: Max. F_{MCK}/6

[Interrupt function]

> Transfer end interrupt, buffer null interrupt

[Error detection flag]

Overflow error

5.17.2 SPI with slave chip selection

This is a clock-synchronous communication interface that communicates using a slave chip select input (SS), a serial clock (SCK), a transmit serial data (SO), and a receive serial data (SI) for a total of four communication lines.

[Data transmission and reception]

- Data length of 7 to 16 bits
- > Phase control of data transmission and reception
- MSB/LSB first

[Clock control]

- Phase control of input/output clocks
- > Transfer cycles generated by prescalers and channel internal counters
- Maximum transfer rate

Slave communication: Max. $F_{\mbox{\scriptsize MCK}}/6$

[Interrupt function]

> Transfer end interrupt, buffer null interrupt

[Error detection flag]

Overflow error

5.17.3 UART

This function enables asynchronous communication over two lines, serial data transmission (TxD) and serial data reception (RxD). Using these two communication lines, data is transmitted and received asynchronously (using the internal baud rate) with other communicating parties in the data frame (consisting of start bits, data, parity bits, and stop bits). Full-duplex UART communication can be implemented by using two channels, dedicated transmitting (even channels) and dedicated receiving (odd channels), and LIN-bus can also be supported by combining a Timer8 unit and an external interrupt (INTP0).

[Data transmission and reception]

- > Data length of 7, 8, 9 or 16 bits
- MSB/LSB first
- > Level setting for transmitting and receiving data, selection of inversion
- > Parity bit appending, parity check function
- Stop bit appending, stop bit detection

[Interrupt function]

- > Transfer end interrupt, buffer null interrupt
- > Error interrupts caused by frame errors, parity check errors, or overflow errors

[Error detection flag]

Frame errors, parity errors, overflow errors

[LIN-bus function].

- Detection of wake-up signals
- Detection of break fields (BF)
- > Measurement of synchronous fields, calculation of baud rate
5.17.4 Simplified I²C

It is a function to synchronize clock communication with multiple devices through two lines of serial clock (SCL) and serial data (SDA). Since this simplified I²C is designed for single communication with devices such as Flash memory, and A/D converters, it is used only as a master device. The start and stop conditions, like the operation control registers, must comply with the AC characteristics and are handled by the software.

[Data transmission and reception]

- > Master transmission, master reception (limited to the master function of single master)
- > ACK output function, ACK detection function
- 8-bit data length (when transmitting the addresses, specify the addresses with the highest 7 bits, and use the lowest bit for R/W control)
- Start and stop conditions are generated by software
- [Interrupt function]
- Transfer end interruption
- [Error detection flag]
- > ACK error, overflow error
- [Simplified I²C unsupported features]
- Slave transmission, slave reception
- Multi-master function (arbitration failure detection function)
- Wait detection function

5.18 Standard serial interface SPI

The serial interface SPI has the following 2 modes.

- 1) Run stop mode: This is the mode used when serial transfer is not in progress, and reduces power consumption.
- 3-wire serial I/O mode: This mode transfers 8-bit or 16-bit data to and from multiple devices via the 3 wires of the serial clock (SCK) and serial data buses (MISO and MOSI).

5.19 Standard serial interface IICA

This product is equipped with a serial interface IICA, supports slave dual address, and has the following three modes.

(1) Run-stop mode

This is the mode used when serial transfer is not performed, which reduces power consumption.

(2) I²C bus mode (support multi-master)

This mode transmits 8-bit data to multiple devices over 2 wires of a serial clock (SCLA) and a serial data bus (SDAA). In accordance with the I²C bus format, the master device can generate "start conditions", "address", "indication of transmission direction", "data" and "stop conditions" on the serial data bus for the slave devices. The slave device automatically detects the received status and data by hardware. This feature simplifies the I²C bus control part of the application program. Since the SCLA and SDAA pins of the serial interface IICA are used as open drain outputs, pull-up resistors are required for the serial clock line and the serial data bus.

(3) Wake-up mode

In deep sleep mode, when an extension code or a local station address is received from the master device, the deep sleep mode can be released by generating an interrupt request signal (INTIICA). This is set via the IICA control register.

5.20 Synchronous Queued Serial Interface (QSPI)

The 1-channel Quad SPI is designed to connect to a serial ROM (non-volatile memory, such as serial flash, serial EEPROM or serial FeRAM) with an SPI-compatible interface:

- Support extended SPI, dual SPI, quad SPI protocols.
- > Configurable for SPI mode 0 and mode 3
- > Address width: 8, 16, 24, 32 bits
- > Timing is configurable to support various serial flash configurations
- Flash read functions: support read, fast read, fast read dual output, fast read dual I/O, fast read quad output and fast read quad I/O command
- Flexible software-controlled support for a variety of serial flash commands and functions, including erase, write, ID read, and power-down control

5.21 Controller CAN

This product can support up to two general-purpose CAN bus interfaces.

5.22 LCD bus interface

The LCD bus interface has the following functions:

- Support two different bus standards: mode8080, mode6800
- Support 8-bit/16-bit read/write operations
- Controllable transfer speed (up to 10MHz)
- DMA transfer can be triggered when internal data transfer is enabled or external bus access is completed.
- Support DMA read and write

5.23 Analog-to-digital converter (ADC)

This product consists of three 12-bit successive approximation A/D converter units (S12AD0, S12AD1, S12AD2) that convert analog inputs to digital values. Unit 0 supports 8-channel ADC analog inputs (AN000~AN007), Unit 1 supports 8-channel ADC analog inputs (AN100~AN107), and Unit 2 supports 16-channel ADC analog inputs (AN200~AN215).

The A/D converter contains the following functions.

- > 12-bit resolution, conversion rate: 1.42Msps.
- > Trigger modes: support software trigger, hardware trigger and hardware trigger in standby mode.
- > Channel selection: support single-channel select mode and multi-channel scann mode.
- > Conversion modes: support single conversion and continuous conversion
- > Operating voltage: support operating voltage range: $2.5V \le V_{DD} \le 5.5V$.
- > It can detect the built-in reference voltage (1.45V) and temperature sensors.

	Software trigger	Start the conversion by operating the software.
	Supebropoue trigger	Synchronous triggering selected by the linkage controller.
Trigger mode	Synchronous ingger	(TRGA0N~TRGA8N, TRGA25N~TRGA28N)
ngger mode		The A/D conversion can be triggered by external trigger pins
	Asynchronous trigger	ADTRG0 (S12AD0), ADTRG1 (S12AD1) or ADTRG2 (S12AD2),
		and the three units can be triggered independently.
		A/D conversion is performed only once for an arbitrarily selected
	Single coop mode	analog input.
	Single scan mode	A/D conversion is performed only once for the internal reference
		voltage/temperature sensor (S12AD2).
	Continuous scan mode	Repeatedly performs A/D conversion for any selected analog input.
		The analog inputs selected arbitrarily are divided into two groups
Operation mode	Group scan mode	(Group A and Group B) or three groups (Group A, B and Group C),
		and the analog inputs of each group are converted to A/D only
		once. (When the number of groups is 2, only the combination of
		groups A and B can be selected.)
		Group A, B, and C scanning start conditions (synchronous trigger)
		can be selected independently, so that each group can start A/D
		conversion independently.
		If a high priority group trigger signal is detected during the scanning
		of a low priority group, the scanning of the low priority group is
	Group scan mode (when group priority control is selected)	stopped and the scanning of the priority group is started. The order
		of priority is group A (highest) > group B > group C (lowest).
		It is selectable whether to restart the scanning of the low priority
		group after the processing of the high priority group is completed.

The ADC can set various A/D conversion modes by combining the modes described below.

		And it is possible to set the rescanning to start from the starting
		channel or from the channel where the A/D conversion is not
		completed.
Sompling	Number of compling	The sampling time can be set by registers, the default value of sampling
time/conversion time	clocks/conversion clocks	clock number is 13 clk, and the minimum value of conversion clock
ume/conversion ume		number is 32 clk.

5.24 Digital-to-analog converter (DAC)

This product has a built-in 2-channel 8-bit resolution analog-to-digital converter (DAC) that converts digital inputs to analog signals. It has the following features:

- > 8-bit resolution D/A converter
- > Support two independent analog channel outputs
- R-2R ladder network
- Built-in real-time output

5.25 Programmable Gain Amplifier (PGA)

This product has 4 built-in programmable gain amplifiers (PGA00, PGA10, PGA11, PGA12), of which the outputs of PGA00 can be used as analog inputs of A/D converter S12AD0, the outputs of PGA10, PGA11, PGA12 can be used as analog inputs of A/D converter S12ADC1, and the outputs of PGA00, PGA10, PGA11, PGA12 can also be selected as inputs of the positive side of the comparator module.

Each programmable gain amplifier has the following features.

- Support two modes: pseudo-differential and fully differential.
- In pseudo-differential mode, the feedback resistor to ground can optionally connect to either internal or PGAnGND pins (n=00, 10, 11, 12).
- In fully differential mode, the PGAnGND pin serves as the negative terminal of the PGA (n=00, 10, 11, 12).
- Pseudo-differential mode offers a selection of 16 gain multiples, with settings: 2/2.5/.../3.077/4.444/5/8/10/16/1.
- > Fully differential mode offers a selection of 4 gain multiples, with settings: 5/8/10/16.

5.26 Comparator (CMP)

This product features four built-in comparators CMP0~CMP3, with the following functionalities:

- > The negative terminal reference of the comparator can select DAC output voltage.
- > The negative terminal reference of the comparator can optionally use external pin input.
- > The positive terminal of the comparator can select PGA output.
- > The positive terminal of the comparator can select external pin input.
- > Selectable digital filter bandwidth.
- > Output inversion function.
- Comparator results can be output from pins (VCOUT0~VCOUT3).
- > Capable of detecting valid edges of comparator output and generating interrupt signals.
- > CMP1 in conjunction with Timer8 can output TIMERWINDOW.
- Support positive hysteresis, negative hysteresis, and dual-edge hysteresis for comparators, with hysteresis voltage options of 20mV, 40mV, and 60mV.

5.27 Two-wire serial debug port (SW-DP)

The ARM's SW-DP interface allows connection to the microcontroller via a serial line debugging tool.

5.28 Standard JTAG debug port (JTAG)

ARM's JTAG interface allows connection to the microcontroller via a serial line debugging tool.

5.29 Safety functions

5.29.1 Flash CRC function (high-speed CRC, universal CRC)

Data errors in flash memory are detected by CRC operations.

The following two CRCs can be used for different applications and conditions of use.

- High-speed CRC: In the initialization program, it can stop the CPU and check the whole code flash area at high speed.
- Universal CRC: Can be used for multi-purpose checking during CPU operation, not limited to the code flash area.

5.29.2 RAM parity error detection function

Detect parity error when reading RAM data.

5.29.3 SFR guard function

Prevent rewriting of important SFRs (Special Function Registers) due to loss of CPU control.

5.29.4 Illegal memory access detection function

Detect illegal access to an illegal memory area (an area with no memory or an area with restricted access).

5.29.5 A/D test function

The A/D converter is self-tested by A/D converting the positive (+) reference voltage, the negative (-) reference voltage, the analog input channel (ANI), the temperature sensor output voltage, and the internal reference voltage.

5.29.6 Digital output signal level detection function for input/output ports

When the input/output port is in output mode, the output level of the pin can be read.

5.30 Key function

A key interrupt (INTKR) can be generated by inputting the falling edge of the key interrupt input pins (KR0~KR7).

6 Electrical Characteristics

6.1 Typical application peripheral circuits

The reference diagram for the connection of peripheral circuits for typical MCU applications is as follows:

6.2 Absolute maximum voltage ratings

(T _A = -40~105°	C)
----------------------------	----

Item	Symbol	Condition	Rating	Unit
Supply voltage	V _{DD}	-	-0.5~+6.5	V
Input voltage	V _{I1}	PA00~PA15, PB00~PB15, PC00~PC15 PD00~PD15, PE00~PE13, PH00~PH04	-0.3~V _{DD} +0.3 ^{Note1}	V
	V _{I2}	PH01~PH04, EXCLK, EXCLKS, RESETB	-0.3~ V_{DD} +0.3 ^{Note1}	V
Output voltage	V ₀₁	PA00~PA15, PB00~PB15, PC00~PC15 PD00~PD15, PE00~PE13, PH00~PH04	-0.3~V _{DD} +0.3 ^{Note1}	V
	V _{AI1}	ANI000~ANI007	-0.3~AVDD0+0.3 ^{Note1,2}	V
Analog input voltage	V _{AI2}	ANI100~ANI107	-0.3~AVDD0+0.3 ^{Note1,2}	V
	V _{AI2}	ANI200~ANI215	-0.3~AVDD0+0.3 ^{Note1,2}	

Note1: Not more than 6.5V.

Note2: The pin of the A/D conversion object cannot exceed AV_{REF}(+)(AVDD0)+0.3.

Caution: Even if one item instantly exceeds the absolute maximum rating, it may reduce the quality of the product. The absolute maximum rating is the threshold that can cause physical damage to the product, and it must be operated within this limit.

- 1. Unless otherwise specified, the characteristics of the multiplexing pin are the same as the characteristics of the port pin.
- 2. AV_{REF}(+): A/D converter positive (+) reference voltage AVDD0 pin level
- 3. Use V_{SS} as the reference voltage.
- 4. Low temperature specification is guaranteed by the design, and is not tested in mass production.

6.3 Absolute maximum current ratings

(T _A = -40~10	5°C)				
Item	Symbol		Condition		
		Per pin	PA00~PA15, PB00~PB15, PC00~PC15	40	mA
			PD00~PD15, PE00~PE13	-40	
Output current,	IOH1	Pin total	PA00~PA15, PB00~PB15, PC00~PC15	-100	mA
high		-170mA	PD00~PD15, PE00~PE13		
		Per pin		-3	mA
	IOH2	Pin total	PH00~PH04	-15	mA
Output current,		Per pin	PA00~PA15, PB00~PB15, PC00~PC15	40	mA
	I _{OL1}		PD00~PD15, PE00~PE13	40	
		Pin total	PA00~PA15, PB00~PB15, PC00~PC15	100	m۸
		170mA	PD00~PD15, PE00~PE13	100	mA
	La	Per pin		15	mA
	IOL2	Pin total	PH00~PH04	45	mA
Operating		Usually runtime			
ambient	TA			-40~105	°C
temperature		when program	programming the flash memory		
Storage	т			-65-150	°C
temperature	I stg		-		C

Caution: Even if one item instantly exceeds the absolute maximum rating, it may reduce the quality of the product. The absolute maximum rating is the threshold that can cause physical damage to the product, and it must be operated within this limit.

- 1. Unless otherwise specified, the characteristics of the multiplexing pin are the same as the characteristics of the port pin.
- 2. Low temperature specification is guaranteed by the design, and is not tested in mass production.

6.4 Oscillation circuit characteristics

6.4.1 X1 and XT1 characteristics

Item	Resonator	Condition	Min.	Тур.	Max.	Unit
X1 clock oscillation	Ceramic/crystal		1.0		20.0	
frequency (Fx)	resonator	-	1.0	-	20.0	
X1 clock oscillation	Ceramic/crystal	20MHz C-10pE	_	15	_	me
stabilization time	resonator	20MHz, C=10pF	-	15	-	1115
X1 clock oscillation	Ceramic/crystal		0.6		1 0	MO
feedback resistor	resonator	-	0.0	_	1.0	101 22
XT1 clock oscillation	Crucital reconstan		22	22 769	25	
frequency (F _{XT})	Crystal resonator	-	52	32.700	30	ΝΠΖ
XT1 clock oscillation	Crystal reconstor	22 768KHz C-10pE		2		6
stabilization time	Crystal resolidion	32.700R12, C=10pF	-	2	-	3

- 1. It only indicates the frequency tolerance range of the oscillation circuit, and the instruction execution time should be referred to the AC characteristics.
- 2. Please ask the resonator manufacturer to evaluate the circuit after installation, and use it after confirming the oscillation characteristics.
- 3. Low temperature specification is guaranteed by the design, and is not tested in mass production.

6.4.2 On-chip oscillator characteristics

Resonator	Condition	Min.	Тур.	Max.	Unit
High-speed on-chip oscillator clock frequency (F _{IH}) ^{Note1,2}	-	2.0	-	64.0	MHz
High-speed on-chip oscillator stabilization time (Tsu)	-	-	12	-	us
	T _A =10~70°C	-	-	±1.0	%
Clock frequency accuracy of high-	T _A =0~105°C	-	-	±1.5	%
speed on-chip oscillator	T _A = -10~105°C	-		±2.0	%
	T _A = -40~105°C	-		±4.0	%
Low-speed on-chip oscillator clock frequency (F _{IL})	-	-	15	-	KHz
Low-speed on-chip oscillator clock frequency accuracy	-	-	-	±10	%

Note1: Select the frequency of the high-speed on-chip oscillator via the option byte.

Note2: It only indicates the characteristics of the oscillation circuit, so please refer to the AC characteristics for the instruction execution time.

Remark: Low temperature specification is guaranteed by the design, and is not tested in mass production.

6.4.3 PLL oscillator characteristics

Resonator	Condition	Min.	Тур.	Max.	Unit
PLL input frequency ^{Note1}	-	8.0	-	16.0	MHz
PLL lock time	-	40	-	-	μs

Note1: It only indicates the characteristics of the oscillation circuit, so please refer to the AC characteristics for the instruction execution time.

6.5 DC characteristics

6.5.1 Pin characteristics

(T_A= -40~105°C, 2.5V≤VDD≤5.5V, VSS=0V)

Item	Symbol	Condition		Min.	Тур.	Max.	Unit
Output current, high ^{Note1}	Юн1	PA00~PA15, PB00~PB15 PC00~PC15, PD00~PD15 PE00~PE13 Per pin	2.5V≤V _{DD} ≤5.5V -40~85°C	-	-	-12.0 ^{Note2}	mA
			2.5V≤V _{DD} ≤5.5V 85~105°C	-	-	-6.0 ^{Note2}	
		Total (when duty cycle≶ 70% ^{Note3})	4.0V≤V _{DD} ≤5.5V -40~85°C	-	-	-140	
			4.0V≤V _{DD} ≤5.5V 85~105°C	-	-	-60	mA
			$2.5V \leq V_{DD} \leq 4.0V$			-30	
	Іон2	PH01~PH04 Per pin	$2.5V \leq V_{DD} \leq 5.5V$	-	-	2.5	mA
		Total (when duty cycle≤ 70% ^{Note3})	2.5V≤V _{DD} ≤5.5V	-	-	10	mA

Note1: This is the value of current that guarantees the operation of the device even if current flows from the V_{DD} pins to the output pins.

Note2: The total current value cannot be exceeded.

Note3: This is the output current value for the "Duty cycle \leq 70% condition".

The following formula can be used to calculate the output current value when the duty cycle is changed to >70% (when the duty cycle is changed to n%).

Total pin output current= $(I_{OH} \times 0.7)/(n \times 0.01)$

<Calculation example> I_{OH} = -10.0mA, n =80%

Total pin output current = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

The current at each pin does not vary by duty cycle and will not flow above the absolute maximum rating.

Caution: In N-channel open-drain mode, the pin that is set to N-channel open-drain active does not output a high level.

- 1. Unless otherwise specified, the characteristics of the multiplexing pin are the same as the characteristics of the port pin.
- 2. Low temperature specification is guaranteed by the design, and is not tested in mass production.

(T_A= -40~105°C, 2.5V≤VDD≤5.5V, VSS=0V)

Item	Symbol	Condition		Min.	Тур.	Max.	Unit
		PA00~PA15, PB00~PB15	$2.5V \leq V_{DD} \leq 5.5V$	-	-	30 ^{Note2}	
		PC00~PC15, PD00~PD15	-40~85°C				mΔ
		PE00~PE13	$2.5V \leq V_{DD} \leq 5.5V$	_	_	15Note2	
Output		Per pin	85~105°C	_	_	10	
	Iol1	PA00~PA15, PB00~PB15	$4.0V \leq V_{DD} \leq 5.5V$		-	150	
		PC00~PC15, PD00~PD15	-40~85°C	-			•
current,		PE00~PE13 Total (when duty cycle≶	4.0V≤V _{DD} ≤5.5V			20	mA
IOW			85~105°C	-	-	80	
_		70% ^{Note3})	2.5V≤V _{DD} <4.0V	-	-	50	mA
		PH01~PH04 Per pin	$2.5V \leq V_{DD} \leq 5.5V$	-	-	6 ^{Note2}	mA
	Iol2	Total (when duty cycle≤ 70% ^{Note3})	2.5V≪V _{DD} ≪5.5V	-	-	20	mA

Note1: This is the value of the current that guarantees the operation of the device even if current flows from the output pins to the V_{SS} pins.

Note2: The total current value cannot be exceeded.

Note3: This is the output current value for the "Duty cycle \leq 70% condition".

The following formula can be used to calculate the output current value when the duty cycle is changed to >70% (n% duty cycle).

Total output current = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Calculation example> IoL= 10.0mA, n = 80%

Total output current = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

The current at each pin does not vary by duty cycle and will not flow above the absolute maximum rating.

- 1. Unless otherwise specified, the characteristics of the multiplexing pin are the same as the characteristics of the port pin.
- 2. Low temperature specification is guaranteed by the design, and is not tested in mass production.

(T_A= -40~105°C, 2.5V≤VDD≤5.5V, VSS=0V)

Item	Symbol	Condition	1	Min.	Тур.	Max.	Unit
Power supply input voltage	V _{DD}	-	-		-	5.5	V
Power ground input voltage	Vss	-			-		V
Input voltage, high	Vih1	PA00~PA15, PB00~PB15 PC00~PC15, PD00~PD15 PE00~PE13	Schmitt input	0.8Vdd	-	Vdd	V
		PA00~PA15,	TTL input 4.0V≤V _{DD} ≤ 5.5V	2.2	-	Vdd	V
	V _{IH2}	PB00~PB15 PC00~PC15, PD00~PD15	TTL input 3.3V≤V _{DD} < 4.0V	2.0	-	Vdd	V
		PE00~PE13	TTL input 2.5V≪V _{DD} < 3.3V	1.5	-	Vdd	V
	VIH3	PH00~PH04, EXCLK, EX	CLKS, RESETB	0.8V _{DD}		Vdd	V
	VIH4				-		V
	VIH5				-		V
	VIL1	PA00~PA15, PB00~PB15 PC00~PC15, PD00~PD15 PE00~PE13	Schmitt input	0	-	0.2V _{DD}	V
		PA00~PA15,	TTL input 4.0V≤V _{DD} ≤ 5.5V	0	-	0.8	V
Input voltage, low	V _{IL2}	PB00~PB15 PC00~PC15, PD00~PD15	TTL input 3.3V≤V _{DD} < 4.0V	0	-	0.5	V
		PE00~PE13	TTL input 2.5V≤V _{DD} < 3.3V	0	-	0.32	V
	V _{IL3}	PH00~PH04, EXCLK, EX	CLKS, RESETB	0		$0.2V_{\text{DD}}$	V
	VIL4	-			-		V
	V _{IL5}	-			-		V

Caution: Even in the N-channel open-drain mode, the maximum value of V_{IH} of the pin that is set to be valid for N-channel open-drain is V_{DD} .

Remark:

1. Unless otherwise specified, the characteristics of the multiplexing pin are the same as the characteristics of the port pin.

2. Low temperature specification is guaranteed by the design, and is not tested in mass production.

Item	Symbol	Condition	on	Min.	Тур.	Max.	Unit
			4.0V≪V _{DD} ≪5.5V I _{OH1} = -12.0mА	V _{DD} -1.5	-	-	V
		PA00~PA15, PB00~PB15 PC00~PC15, PD00~PD15	4.0V≪V _{DD} ≪5.5V I _{OH1} = -6.0mA	V _{DD} -0.7	-	-	V
	Voh1		2.5V≪V _{DD} ≪5.5V I _{OH1} = -3.0mА	V _{DD} -0.6	-	-	V
Output		PE00~PE13	2.5V≪V _{DD} ≪5.5V I _{OH1} = -2mA	V _{DD} -0.5	-	-	V
voltage, high			4.0V≪V _{DD} ≪5.5V I _{OH2} = -2.5mA	V _{DD} -1.5	-	-	V
			4.0V≪V _{DD} ≪5.5V I _{OH2} = -1.5mA	V _{DD} -0.7	-	-	V
	V OH2	PH01~PH04	2.5V≪V _{DD} ≪5.5V I _{OH2} = -0.5mA	V _{DD} -0.6	-	-	V
			2.5V≪V _{DD} ≪5.5V I _{OH2} = -0.4mА	V _{DD} -0.5	-	-	V
	V	PA00~PA15, PB00~PB15 PC00~PC15, PD00~PD15 PE00~PE13	4.0V≪V _{DD} ≪5.5V I _{OL1} =35.0mA	-	-	1.2	V
			4.0V≪V _{DD} ≪5.5V I _{OL1} =20.0mA	-	-	0.7	V
	V OL1		2.5V≪V _{DD} ≪5.5V I _{OL1} =9.0mA	-	-	0.4	V
Output			2.5V≪V _{DD} ≪5.5V I _{OL1} =7.0mA	-	-	0.4	V
low			4.0V≪V _{DD} ≪5.5V I _{OL2} =10.0mA	-	-	1.2	V
	Maria		4.0V≪V _{DD} ≪5.5V I _{OL2} =6.0mA	-	-	0.7	V
	V OL2	FNU1~PNU4	2.5V≪V _{DD} ≪5.5V I _{OL2} =2.5mA	-	-	0.4	V
			2.5V≤V _{DD} ≤5.5V I _{OL2} =2.0mA	-	-	0.4	V

(T_A= -40~105°C, 2.5V≤VDD≤5.5V, VSS=0V)

Caution: In N-channel open-drain mode, the pin that is set to N-channel open-drain active does not output a high level.

- 1. Unless otherwise specified, the characteristics of the multiplexing pin are the same as the characteristics of the port pin.
- 2. Low temperature specification is guaranteed by the design, and is not tested in mass production.

(T_A= -40~105°C, 2.5V≤VDD≤5.5V, VSS=0V)

Item	Symbol	Conditio	n	Min.	Тур.	Max.	Unit
Input leakage current, high	I _{LIH1}	PA00~PA15, PB00~PB15 PC00~PC15, PD00~PD15 PE00~PE13	VI=VDD	-	-	1	μΑ
	Ілна	PH00~PH04 (X1, X2 EXCLK, XT1, XT2,	VI=VDD, when the input port and external clock are inputting	-	-	1	μΑ
		EXCLKS)	V _I =V _{DD} , when connecting the resonator	-	-	10	μA
Input leakage current, low	Ilil1	PA00~PA15, PB00~PB15 PC00~PC15, PD00~PD15 PE00~PE13	VI=VSS	-	-	-1	μΑ
	Ilul2	PH00~PH04 (X1, X2 EXCLK, XT1, XT2,	V _I =V _{SS} , when the input port and external clock are inputting	-	-	-1	μΑ
		EXCLKS)	V _I =V _{SS} , when connecting the resonator	-	-	-10	μA
Internal pull-up resistance	Ru	PA00~PA15, PB00~PB15 PC00~PC15, PD00~PD15 PE00~PE13	VI=Vss, when inputting a port	10	30	100	kΩ
Internal pull- down resistance	RD	PA00~PA15, PB00~PB15 PC00~PC15, PD00~PD15 PE00~PE13	VI=Vss, when inputting a port	10	30	100	kΩ

- 1. Unless otherwise specified, the characteristics of the multiplexing pin are the same as the characteristics of the port pin.
- 2. Low temperature specification is guaranteed by the design, and is not tested in mass production.

6.5.2 Power supply current characteristics

Item	Symbol			Condition		Min.	Тур.	Max.	Unit
				FHOCO=16MHz, FPLL=12	8MHz ^{Note3}	-	12	40	
			High-speed	FHOCO=64MHz,FIH=64M	Hz ^{Note3}	-	7.5	30	
			on-chip	Fносо=32MHz, Fiн=32MHz ^{Note3}		-	6	20	mA
			oscillator	FHOCO=24MHz,FIH=24M	Hz	-	5.5	18	
		Run mode	High-speed		Square wave input	-	5.0	13.5	
	I _{DD1}		main system clock	F _{MX} =20MHz ^{Note2}	Crystal oscillator connection	-	5.5	14.5	mA
			Subsystem clock operation		Square wave input	-	0.25	5.0	
				F _{SUB} =32.768KHz ^{Note4}	Crystal oscillator connection	-	0.25	5.0	mA
		Sleep mode	Lligh apod	F _{HOCO} =16MHz, F _{PLL} =12	8MHz ^{Note3}	-	6	30	
Power			on-chip oscillator	F _{HOCO} =64MHz, F _{IH} =64MHz ^{Note3}		-	3.5	25	mA
				FHOCO=32MHz, FIH=32M	1Hz ^{Note3}	-	2.5	16	
				FHOCO=24MHz, FIH=24M	1Hz	-	2.2	14	
Current Note1			High-speed main system clock		Square wave input	-	1.0	7.5	
	Idd2			F _{MX} =20MHz ^{Note2}	Crystal oscillator connection	-	1.5	8.5	mA
					Square wave input	-	0.15	4.5	
			Subsystem clock operation	F _{SUB} =32.768KHz ^{Note5}	Crystal oscillator connection	-	0.15	4.5	mA
		Deep sleep mode _{Note7}	T _A = -40°C∼105°	C VDD=3.0V		-	0.15	4.0	mA
	IDD3	Deep	T _A = -40°C~25°C	C V _{DD} =3.0V			20	50	
	Note6	sleep	T _A = -40°C~85°C	C V _{DD} =3.0V		-	20	500	
		mode with partial power	T _A = -40°C~105°	$\Gamma_{A} = -40^{\circ}C \sim 105^{\circ}C V_{DD} = 3.0V$		-	20	750	μΑ

(T_A= -40~105°C, 2.5V≤VDD≤5.5V, VSS=0V)

		down ^{Note}					
		7					
Note	1: This is	s the tota	al current through VDD0 to VDD3. Typical alue: The	e CPU is	in multip	lication	

instruction execution (I_{DD1}), and does not include peripheral operating current. Maximum value: The CPU is in multiplication instruction execution (I_{DD1}) and contains external operating current, but does not include current to the A/D converter, LVD circuit, I/O ports, and internal pull-up or pull-down resistors, nor does it include the current when overwriting the data flash memory.

Note2: This is when the high-speed on-chip oscillator and the subsystem clock stop oscillating.

Note3: This is when the high-speed main system and the subsystem clock stop oscillating.

Note4: This is when the high-speed on-chip oscillator and the high-speed main system clock stop oscillating.

Note5: This is when the high-speed on-chip oscillator and the high-speed main system clock stop oscillating. Contains current to the RTC, but does not include current to 15-bit interval timers and watchdog timers.

Note6: Current to RTC, 15-bit interval timers, and watchdog timers is not included.

Note7: For the current value when the subsystem clock is running in deep sleep mode, refer to the current value when the subsystem clock is running in sleep mode.

Remark:

- 1. F_{HOCO}: High-speed on-chip oscillator clock frequency, F_{IH}: High-speed on-chip oscillator system clock frequency.
- 2. F_{SUB}: External subsystem clock frequency (XT1/XT2 clock oscillation frequency)
- 3. F_{MX}: External main system clock frequency (X1/X2 clock oscillation frequency)
- 4. The typical temperature condition is $T_A=25^{\circ}C$.
- 5. Low temperature specification is guaranteed by the design, and is not tested in mass production.

Item	Symbol	C	Condition	Min.	Тур.	Max.	Unit
Low speed on-chip oscillator operating current	FIL Note1	-		-	0.2	-	μA
RTC operating current	RTC Note1,2,3		-	-	0.04	-	μA
15-bit interval timer operating current	IT Note1,2,4	-		-	0.02	-	μA
Watchdog timer operating current	WDT Note1,2,5	Fi∟=15KHz		-	0.22	-	μA
A/D converter operating	L Note1.6	ADC US mode @128MHz		-	2.2	-	mA
current	IADC 112 1,2	ADC HS mode @4MHz		-	1.3	-	mA
D/A converter operating current	DAC Note1,8	Per chan	nel	-	0.2	-	mA
PGA operating current		Per channel		-	480	700	μA
Comparator operating current	ICMP Note1,9	Per channel	No internal reference voltage is used	-	60	100	μA

(T_A= -40~105°C, 2.5V≤VDD≤5.5V, VSS=0V)

		An internal				
		reference	-	80	140	μA
		voltage is used				
LVD operating current	LVD Note1,7	-	-	0.08	-	μA

Note1: This is the current flowing through V_{DD} .

- Note2: This is when the high-speed on-chip oscillator and the high-speed system clock stop oscillating.
- Note3: This is the current that flows only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillation circuit). In the case of a real-time clock operating in run mode or sleep mode, the current value of the microcontroller is I_{DD1} or I_{DD2} plus the I_{RTC} value. In addition, I_{FIL} must be added when selecting a low-speed on-chip oscillator. I_{DD2} when the subsystem clock is running contains the operating current of the real-time clock.
- Note4: This is the current that flows only to the 15-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and XT1 oscillation circuit). In the case of 15-bit interval timer operation in run mode or sleep mode, the current value of the microcontroller is I_{DD1} or I_{DD2} plus the I_{IT} value. In addition, I_{FIL} must be added when selecting a low-speed on-chip oscillator.
- Note5: This is the current that flows only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). In the case of watchdog timer operation, the current value of the microcontroller is I_{DD1} or I_{DD2} or I_{DD3} plus I_{WDT}.
- Note6: This is the current that only flows to the A/D converter. In the case of A/D converter operation in run mode or sleep mode, the current value of the microcontroller is I_{DD1} or I_{DD2} plus the I_{ADC} value.
- Note7: This is the current that only flows to the LVD circuit. In the case of LVD circuit operation, the current value of the microcontroller is IDD1 or IDD2 or IDD3 plus the value of ILVD.
- Note8: This is the current that only flows to the D/ A converter. In the case of D/ A converter operation in run mode or sleep mode, the current value of the microcontroller is I_{DD1} or I_{DD2} plus the I_{DAC} value.
- Note9: This is the current that only flows to the comparator circuit. In the case of comparator circuit operation, the current value of the microcontroller is I_{DD1} or I_{DD2} or I_{DD3} plus the I_{CMP} value.

- 1. FIL: Low-speed on-chip oscillator clock frequency
- 2. The typical temperature condition is $T_A=25^{\circ}C$.
- 3. Low temperature specification is guaranteed by the design, and is not tested in mass production.

6.6 AC characteristics

Item	Symbol	Conditio	n	Min.	Тур.	Max.	Unit
Instruction cycle		Main system clock (F _{MAIN}) is running	2.5V≤V _{DD} ≤5.5V	0.015625	-	1	μs
(minimum instruction execution time)	Тсү	Subsystem clock (F _{SUB}) is running	2.5V≤V _{DD} ≤5.5V	28.5	30.5	31.3	μs
External	F _{EX}	2.5V≤V _{DD} ≤5.5V		1.0	-	20.0	MHz
system clock frequency	F _{EXS}	2.5V≤V _{DD} ≤5.5V		32.0	-	35.0	KHz
High/low	Texh, Texl	2.5V≪V _{DD} ≪5.5V	2.5V≤V _{DD} ≤5.5V		-	-	ns
widths of external system clock inputs	T _{exhs} , T _{exls}	2.5V≪V _{DD} ≪5.5V	2.5V≪V _{DD} ≪5.5V		-	-	μs
TI00~TI07 TI10~TI17 input high/low level width	T _{TIH} , T _{TIL}	2.5V≤V _{DD} ≤5.5V	2.5V≪V _{DD} ≪5.5V		-	-	ns

 $(T_{A}=-40\sim105^{\circ}C, 2.5V \leq VDD \leq 5.5V, VSS=0V)$

- 1. FMCK: Timer8 unit operating clock frequency
- 2. Low temperature specification is guaranteed by the design, and is not tested in mass production.

(T_A= -40~105°C, 2.5V≤VDD≤5.5V, VSS=0V)

Item	Symbol	Cor	ndition	Min.	Тур.	Max.	Unit
Output frequencies of TO00 ~ TO03							
TO10 ~ TO17		4.0V≤V _{DD} ≤5.5V	4.0V≪V _{DD} ≪5.5V			16	MHz
TAIO0, TAO0							
TMIOA0, TMIOA1	Fто						
TMIOB0, TMIOB1							
TMIOC0, TMIOC1		251/51/01/	-	_	8	MHz	
TMIOD0, TMIOD1		2.3 V < V DD < 4.0 V	-	-			
TBIOA, TBIOB							
Output frequencies of	F actor	4.0V≪V _{DD} ≪5.5V		-	-	16	MHz
CLKBUZ0, CLKBUZ1	FPCL	2.5V≤V _{DD} <4.0V		-	-	8	MHz
High/low widths of	TINTH		25//5//555//	1			110
interrupt inputs	TINTL	$INTFO \sim INTFT$	2.30 < 000 < 3.30	I	-	-	μs
High/low level widths of	Tup		25\/<\/p><55\/	250	_	_	ne
key interrupt inputs	I KR		2.5V≪VDD≪5.5V	200	-	-	115
Low-level width of	TRSI			10	-	-	us
RESETB	INGL			10	-	-	μο

6.7 Peripheral function characteristics

6.7.1 Universal interface unit

(1) UART mode

(T_A= -40~85°C, 2.5V≤VDD≤5.5V, VSS=0V)

ltem Co		ndition	Specificat	Lipit	
		nation	Min.	Max.	Unit
		-	-	Fмск/6	bps
Transfer	$2.5 V \leqslant V_{DD} \leqslant 5.5 V$	Theoretical value of the		10.0	Marc
rate			-	10.6	rani
		FMCK=FCLK			

(T_A=85~105°C, 2.5V≤VDD≤5.5V, VSS=0V)

ltom	Co	ndition	Specifica	Lloit	
		nation	Min.	Max.	Unit
		-	-	F _{MCK} /12	bps
Transfer rate	$2.5V \leqslant V_{DD} \leqslant 5.5V$	Theoretical value of the maximum transfer rate	-	5.3	Mbps
		Fмск=Fсlk			- T -

Remark: It is guaranteed by the design, and is not tested in mass production.

(2)	3-wire SPI mode	(master mode,	internal c	lock output)
-----	-----------------	---------------	------------	--------------

	Oursels al	Condition		-40~85°C		85~105°C		1.1
Item	Symbol		ondition	Min.	Max.	Min.	Max.	Unit
			$4.0V \leqslant V_{DD} \leqslant 5.5V$	31.25	-	62.5	-	ns
SULKp cycle	T _{KCY1}	$T_{KCY1} \geqslant 2/F_{CLK}$	$2.7V \leqslant V_{DD} \leqslant 5.5V$	41.67	-	83.33	-	ns
ume			$2.5V \leqslant V_{DD} \leqslant 5.5V$	65	-	125	-	ns
		$4.0V \leq V_{DD} \leq 5$	5.5V	Тксү1/2-4	-	Т _{КСҮ1} /2- 7	-	ns
SCLKp high/low level width	Ткн1 Ткl1	$2.7V \leqslant V_{DD} \leqslant 5.5V$		Тксү1/2-5	-	Т _{ксү1} /2- 10	-	ns
		$2.5V \leqslant V_{DD} \leqslant 5.5V$		Т _{КСҮ1} /2- 10	-	Т _{ксү1} /2- 20	-	ns
SDIp set-up		$4.0V \leqslant V_{DD} \leqslant 5$	5.5V	12	-	23	-	ns
time (for	T _{SIK1}	$2.7V \leqslant V_{DD} \leqslant 5$	5.5V	17	-	33	-	ns
SCLKp↑)		$2.5V \leqslant V_{DD} \leqslant 5$	5.5V	20	-	38	-	ns
SDIp hold								
time (for	T _{KSI1}	$2.5V \leq V_{DD} \leq 5$	5.5V	5	-	10	-	ns
SCLKp↑)								
Delay time								
from	Treat	$2.5V \leq V_{DD} \leq 5$	5.5V	-	5	-	10	ns
SCLKp↓→S	• 1301	C=20pF Note1			5		.0	
DOp								

(T_A= -40~105°C, 2.5V≤VDD≤5.5V, VSS=0V)

Note1: C is the load capacitance of the SCLKp, SDOp output lines.

Caution: Through the Port Input Mode Register and Port Output Mode Register, the SDIp pin is selected as the normal input buffer and the SDOp pin and SCLKp pin are selected as the normal output mode.

Remark: It is guaranteed by the design, and is not tested in mass production.

(3)	3-wire SPI mode	(slave mode,	external	clock input)
-----	-----------------	--------------	----------	--------------

Itom Sumb		Condition		-40 ~ 85	-40 ~ 85°C		85 ~ 105°C	
item	Symbol	Condition		Min.	Max.	Min.	Max.	Unit
		$4.0V \leqslant V_{DD}$	20MHz <f<sub>MCK</f<sub>	8/Fмск	-	16/Fмск	-	ns
		$\leq 5.5 V$	F _{MCK} ≪20MHz	6/F _{MCK}	-	12/F _{МСК}	-	ns
SCIK		$2.7V \leqslant V_{DD}$	16MHz <f<sub>MCK</f<sub>	8/F _{MCK}	-	16/F _{МСК}	-	ns
SULKP	Тксү2	≤ 5.5V	F _{MCK} ≪16MHz	6/F _{MCK}	-	12/F _{МСК}	-	ns
Cycle time		$2.5V \leqslant V_{DD} \leqslant$	$2.5V \leqslant V_{DD} \leqslant 5.5V$		-	12/F _{мск} and≥ 1000	-	ns
SCLKp	T	$4.0V \leq V_{DD} \leq$	5.5V	Тксү1/2-7	-	Тксү1/2-14	-	ns
high/low	T KH2	$2.7V \leqslant V_{DD} \leqslant 5.5V$		Тксү1/2-8	-	Тксү1/2-16	-	ns
level width	I KL2	$2.5V \leqslant V_{DD} \leqslant$	5.5V	T _{KCY1} /2-18	-	T _{KCY1} /2-36	-	ns
SDIp set-	Tama	$2.7V \leq V_{DD} \leq$	5.5V	1/F _{MCK} +20	-	1/F _{MCK} +40	-	ns
SCLKp↑)	T SIK2	$2.5V \leqslant V_{DD} \leqslant$	5.5V	1/F _{MCK} +30	-	1/F _{MCK} +60	-	ns
SDIp hold time (for SCLKp↑)	T _{KSI2}	$2.5V \leqslant V_{DD} \leqslant$	5.5V	1/F _{мск} +31	-	1/F _{мск} +62	-	ns
Delay time from	Ŧ	$2.7V \leqslant V_{DD} \leqslant$ C=30pF ^{Note1}	5.5V	-	2/F _{мск} +44	-	2/F _{MCK} +66	ns
SCLKp ightarrow ightarrow SDOp	I KSO2	$2.5V \leqslant V_{DD} \leqslant$ C=30pF ^{Note1}	5.5V	-	2/F _{MCK} +75	-	2/F _{MCK} +113	ns

$(T_{4}40 - 105^{\circ})$	$25V \le VDD \le 5V$	1/10-22/1
(1A - 40 - 100 0)	2.00 < 000 < 0.00	v00-0v,

Note1: C is the load capacitance of the SCLKp, SDOp output lines.

Caution: Through the Port Input Mode Register and Port Output Mode Register, the SDIp and SCLKp pins are selected as the normal input buffers and the SDOp pin is selected as the normal output mode. Remark: It is guaranteed by the design, and is not tested in mass production.

(4)	4-wire SPI mode	(slave mode,	external	clock input)
-----	-----------------	--------------	----------	--------------

ltom	Sumbol		Condition	-40 ~ 85°C		85 ~ 105°C		L Incid
Item	Symbol		Condition	Min.	Max.	Min.	Max.	Unit
			$2.7V \leqslant V_{DD} \leqslant 5.5V$	120	-	240	-	ns
8800		DAFIIII=0	$2.5V \leqslant V_{DD} \leqslant 5.5V$	200	-	400	-	ns
SSUU	Торис		$2.7 V \le V_{PP} \le 5.5 V$	1/F _{MCK} +	-	1/F _{MCK} +		20
time	DABmn-1	2.7 V ≤ VDD ≤ 5.5 V	120		240	-	115	
		DAI IIII-1	$2.5V \leq V_{DD} \leq 5.5V$	1/F _{MCK} +	-	1/Fмск+		20
				200		400	_	115
			$2.7V \leq V_{DD} \leq 5.5V$	1/F _{MCK} +	-	1/F _{MCK} +	_	ne
		DABmn-0		120		240	-	115
SS00	Tura	DAFIIII=0	$2.5V \leq V_{PP} \leq 5.5V$	1/F _{MCK} +	-	1/F _{MCK} +		20
hold time	TKSSI		2.5 V < VDD < 5.5 V	200		400	-	115
	DAPm	DABmn-1	$2.7V \leq V_{DD} \leq 5.5V$	120	-	240	-	ns
			DAPmn=1 2.5V ≤	$2.5V \leq V_{DD} \leq 5.5V$	200	-	400	-

(T_A= -40~105°C, 2.5V≪VDD≪5.5V, VSS=0V)

Caution: Select the SDIp and SCLKp pins as the normal input buffers and the SDOp pin as the normal output mode via the Port Input Mode Register and Port Output Mode Register. Remark: It is guaranteed by the design, and is not tested in mass production.

(5) Simplified IIC mode

(T_A= -40~105°C, 2.5V≤VDD≤5.5V, VSS=0V)

ltom	Symbol	Condition	-40 ~ 85°C 85 ~ 105°C		05°C	Unit	
nem	Symbol	Condition	Min.	Max.	Min.	Max.	Unit
		$2.7V \leqslant V_{DD} \leqslant 5.5V$		1000Note1		400Note1	
		C_b = 50 pF, R_b = 2.7 k Ω	-	1000	-	400	ΝΠΖ
SCLr clock	Faar	$2.5V \leqslant V_{DD} \leqslant 5.5V$		400Note1		100Note1	
frequency	I SCL	$C_b=100 \text{ pF}, R_b=3 k\Omega$	-	400	-	100	INI IZ
		$2.5V \leqslant V_{DD} \leqslant 2.7V$	_	300Note1	_	75Note1	KH-2
		$C_b=100 \text{ pF}, \text{R}_b = 5 \text{k}\Omega$	-	500	-	75	IN 12
		$2.7V \leqslant V_{DD} \leqslant 5.5V$	475	_	1200	_	ne
Hold time		$C_{b}=50\ pF,\ R_{b}$ = 2.7 kΩ	475	-	1200	-	115
when SCI r is	TLOW	$2.5V \leqslant V_{DD} \leqslant 5.5V$	1150	_	4600	-	ne
low	LOW	$C_b = 100 \text{ pF}, \text{R}_b = 3 \text{k} \Omega$	1150	_	1000		115
		$2.5V \leqslant V_{DD} \leqslant 2.7V$	1550		6500	-	ns
		C_b = 100 pF, R_b = 5 k Ω	1000		0300	_	113
		$2.7V \leqslant V_{DD} \leqslant 5.5V$	475	_	1200	_	ns
Hold time		C_b = 50 pF, R_b = 2.7 k Ω	110		1200		115
when SCI r is	Тысы	$2.5V \leqslant V_{DD} \leqslant 5.5V$	1150	-	4600	-	ns
high	Thom	$C_b = 100 \text{ pF}, \text{R}_b = 3 \text{k} \Omega$	1100		-000		115
Hold time when SCLr is high		$2.5V \leqslant V_{DD} \leqslant 2.7V$	1550	-	6500	-	ns
		C_b = 100 pF, R_b = 5 k Ω	1000		0000		110
		$2.7V \leqslant V_{DD} \leqslant 5.5V$	1/Fмск+85	-	1/F _{мск} +220 ^N	-	ns
		C_b = 50 pF, R_b = 2.7 k Ω	Note2		ote2		110
Data setup		2 5V ≤ Vpp ≤ 5 5V	1/Fмск+14		1/Емск+580 ^N		
time		$C_{\rm b} = 100 \text{ pF}$, $R_{\rm b} = 3 \text{ kO}$	5	-	ote2	-	ns
(reception)	100.0/1		Note2				
()		$2.5V \leq V_{DD} \leq 2.7V$	1/Fмск+23		1/Емск+1200		
		$C_{b} = 100 \text{ pF}, R_{b} = 5 \text{ k}\Omega$	0	-	Note2	-	ns
			Note2				
		$2.7V \leq V_{DD} \leq 5.5V$	-	305	-	770	ns
		$C_{b} = 50 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$			_	_	-
Data hold time	THD: DAT	$2.5V \leqslant V_{DD} \leqslant 5.5V$	-	355	-	1420	ns
(transmission)		$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$		000		_	-
		$2.5V \leqslant V_{DD} \leqslant 2.7V$	-	405	-	2070	ns
		C_b = 100 pF, R_b = 5 k Ω				_010	

Note1: The value must also be equal to or less than $F_{\mbox{MCK}}\!/4.$

Note2: Set the F_{MCK} value to keep the hold time of SCLr = "L" and SCLr = "H".

Remark: It is guaranteed by the design, and is not tested in mass production.

6.7.2 Serial interface IICA

(1) I²C standard mode

(T_A= -40~105°C, 2.5V≤VDD≤5.5V, VSS=0V)

Itom	Symbol	Condition	Specification value		Unit
nem	Symbol	Condition	Min.	Max.	Unit
	F actor	Standard mode:		100	
SOLAI CIOCK ITEQUENCY	FSCL	F _{CLK} ≥1MHz	-	100	ΝΠΖ
Set-up time of the start	Tauran		47	-	
condition	TSU: STA	-	4.7		μs
Hold time of the start	Tuplota		4.0	-	UE
condition ^{Note1}	THD: STA	-	4.0		μο
Hold time when SCLAr is low	T _{LOW}	-	4.7	-	μs
Hold time when SCLAr is	Тинон		4.0	-	UE
high	THIGH	-	4.0		μο
Data set-up time (reception)	TSU: DAT	-	250	-	ns
Data hold time	T.,		0	2.45	110
(transmission) Note2	HD: DAT	-	0	5.45	μs
Set-up time of the stop	Toutoto		4.0	-	U.C.
condition	150:510	-	4.0		μο
Bus idle time	TBUF	-	4.7	-	μs

Note1: Generate the first clock pulse after a start condition or a restart condition is generated. Note2: The maximum value of $T_{HD: DAT}$ needs to be guaranteed during normal transfer and needs to be waited during ACK.

- 1. The maximum value of C_b (communication line capacitance) for each mode and the value of R_b (pull-up resistor value of the communication line) at this time are as follows: Standard mode: C_b =400pF, R_b =2.7K Ω
- 2. It is guaranteed by the design, and is not tested in mass production.

(2) I²C fast mode

(T_A= -40~105°C, 2.5V≤VDD≤5.5V, VSS=0V)

ltere	Cumhal	Condition	Specifica	tion value	Unit	
Item	Symbol	Condition	Min.	Max.	Unit	
SCLAr clock frequency	F _{SCL}	Fast mode: F _{CLK} ≥3.5MHz	-	400	KHz	
Set-up time of the start condition	TSU: STA	-	0.6	-	μs	
Hold time of the start condition ^{Note1}	T _{HD: STA}	-	0.6	-	μs	
Hold time when SCLAr is low	TLOW	-	1.3	-	μs	
Hold time when SCLAr is high	Тнідн	-	0.6	-	μs	
Data set-up time (reception)	TSU: DAT	-	100	-	ns	
Data hold time (transmission) ^{Note2}	Thd: dat	-	0	0.9	μs	
Set-up time of the stop condition	Тѕи: ѕто	-	0.6	-	μs	
Bus idle time	TBUF	-	1.3	-	μs	

Note1: Generate the first clock pulse after a start condition or a restart condition is generated.

Note2: The maximum (MAX.) value of T_{HD: DAT} needs to be guaranteed during normal transfer and needs to be waited during ACK.

- The maximum value of C_b (communication line capacitance) for each mode and the value of R_b (pull-up resistor value of the communication line) at this time are as follows: Fast mode: C_b=320pF, R_b=1.1KΩ
- 2. It is guaranteed by the design, and is not tested in mass production.

(3) I²C enhanced fast mode

(T_A= -40~105°C, 2.5V≤VDD≤5.5V, VSS=0V)

ltom	Symbol	Condition	Specifica	tion value	Linit	
nem	Symbol	Condition	Min.	Max.	Onit	
SCLAr clock frequency	F _{SCL}	Enhanced fast mode: Fc∟κ≥10MHz	-	1000	KHz	
Set-up time of the start condition	T _{SU: STA}	-	0.26	-	μs	
Hold time of the start condition ^{Note1}	T _{HD: STA}	-	0.26	-	μs	
Hold time when SCLAr is low	TLOW	-	0.5	-	μs	
Hold time when SCLAr is high	Тнідн	-	0.26	-	μs	
Data set-up time (reception)	T _{SU: DAT}	-	50	-	ns	
Data hold time (transmission) Note2	Thd: dat	-	0	0.45	μs	
Set-up time of the stop condition	Тѕи: ѕто	-	0.26	-	μs	
Bus idle time	TBUF	-	0.5	-	μs	

Note1: Generate the first clock pulse after a start condition or restart condition is generated.

Note2: The maximum value of T_{HD: DAT} needs to be guaranteed during normal transfer and needs to be waited during ACK.

- 1. The maximum value of C_b (communication line capacitance) for each mode and the value of R_b (pull-up resistor value of the communication line) at this time are as follows: Enhanced fast mode: $C_b=120pF$, $R_b=1.1K\Omega$
- 2. It is guaranteed by the design, and is not tested in mass production.

6.8 Analog characteristics

6.8.1 A/D converter characteristics

 $(T_A=-40\sim105^{\circ}C, 2.5V \le AVDD0 \le VDD \le 5.5V, V_{SS}=0V$; reference voltage (+)=AVDD0, reference voltage (-)=AVSS0=0V)

Item	Symbol	Cor	ndition	Min.	Тур.	Max.	Unit
Resolution	RES		-	-	12	-	bit
Combined error ^{Note1}	ET	12-bit resolution	2.5V ≤AVDD0≤ 5.5V	-	-	±4.0	LSB
Zero scale error Note1	Ezs	12-bit resolution	2.5V ≤AVDD0≤ 5.5V	-	-	±4.0	LSB
Full scale error Note1	E _{FS}	12-bit resolution	2.5V ≤AVDD0≤ 5.5V	-	-	±4.0	LSB
Integral linearity error ^{Note1}	EL	12-bit resolution	2.5V ≤AVDD0≤ 5.5V	-	-	±4.0	LSB
Differential linearity error Note1	ED	12-bit resolution	2.5V ≤AVDD0≤ 5.5V	-	-	±2.0	LSB
		12-bit resolution Conversion object: ANI2~ANI15	$2.5V \leqslant V_{DD} \leqslant 5.5V$	45	-	-	1/Fadc
Conversion time Note3	Τςοην	12-bit resolution Conversion object: internal reference voltage, temperature sensor output voltage, PGA output voltage	$2.5V \leqslant V_{DD} \leqslant 5.5V$	72	-	-	1/F _{ADC}
External input resistance	Rain	R_{AIN} < (Ts / (Fadc x	Cadd x In(2 ¹²⁺²)) - Radd)	-	3.75 ^{Note4}	-	KΩ
Sampling switch resistance	Radc		-	-	-	1.5	KΩ
Sample-and-hold capacitance	CADC		-	-	2		pF
		ANI000~ANI007, ANI100~ANI107, ANI200~ANI215		0	-	AVDD0	V
Analog input voltage	VAIN	Internal reference vol	tage (2.5V≪V _{DD} ≪5.5V)	V _{BGR} Note2			V
		Temperature se (2.5V≤)	nsor output voltage V _{DD} ≪5.5V)	,	V _{TMPS25} Note	2	V

Note1: Quantization error (±1/2 LSB) is not included.

Note2: Please refer to "6.8.2 Characteristics of temperature sensor/internal reference voltage".

Note3: Tmclk is the action clock period of the AD, and the maximum action frequency is 128MHz.

Remark: Low temperature specification is guaranteed by the design, and is not tested in mass production.

6.8.2 Characteristics of temperature sensor/internal reference voltage

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Temperature sensor			1.00		V	
output voltage	V TMPS25	TA=25 C	-	1.09	-	v
Internal reference	V _{BGR}	V _{BGR} T _A = -40~105°C	1.38	1.45	1.5	V
voltage						
Temperature coefficient	F _{VTMPS}	-	-	-3.5	-	mV/°C
Operation stabilization	Т		F			
wait time	I AMP	-	5	-	-	μs

(T_A= -40~105°C, 2.5V≪V_{DD}≪5.5V, VSS=0V)

Remark: Low temperature specification is guaranteed by the design, and is not tested in mass production.

6.8.3 D/A converter

Item	Symbol		Min.	Тур.	Max.	Unit	
Resolution	RES	-	-	-	-	8	bit
Combined	A INII	Blood 4MO	2.5V≤V _{DD} ≤5.5V	-	-	±2.5	LSB
error	AINL	R1080=410102					
Stabilization	T	Clear Don E	2.7V≤V _{DD} ≤5.5V	-	-	3	μs
time	ISET	Cload=20pF	2.5V≤V _{DD} <2.7V	-	-	6	μs
Output load	RO	Rload=4MΩ	2.5V≤V _{DD} ≤5.5V	4.7		8	KΩ

Remark: Low temperature specification is guaranteed by the design, and is not tested in mass production.

6.8.4 Comparator

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Input offset		VIOCMP		- ±10	±40	mV
voltage	VIOCMP		-			
Input voltage			0) (V
range	IVCMP	-	0	-	V DD	v
Response time	Tcr, Tcf	Input amplitude±100mV	-	70	150	ns
Operation	-				2	
stabilization time	I CMP		-	-	3	μs
Operating current	ICMPDD	See 6. 5. 2 Power supply current characteristics			-	

(T_A= -40~105°C, 2.5V≤VDD≤5.5V, VSS=0V)

Remark: Low temperature specification is guaranteed by the design, and is not tested in mass production.

6.8.5 Programmable gain amplifier (PGA)

(14- 40 10	550, 2.57	< 000 < 0.5 €, 000	<u> </u>	1		1		
Item	Symbol	(Condition	Min.	Тур.	Max.	Unit	
Input offset voltage	Viopga		-	-	-	±10	mV	
Input voltage range	V _{IPGA}		-	0	-	0.9xV _{DD} / Gain	V	
Output voltage	VIOHPGA		-	$0.93 \text{xV}_{\text{DD}}$	-	-	V	
range	VIOLPGA		-	-	-	$0.07 \mathrm{xV}_{\mathrm{DD}}$	V	
			x5	-	-	±1		
		In full	x8	-	-	±1		
		differential	x10	-	-	±1	%	
		mode	x16	-	-	±2		
			x2.000	-	-	±1		
			x2.500	-	-	±1		
			x2.667	-	-	±1		
			x2.857	-	-	±1		
			x3.077	-	-	±1		
			x3.333	-	-	±1	- % - %	
Gain error	-	In pseudo- differential mode	x3.636	-	-	±1		
			x4.000	-	-	±1		
			x4.444	-	-	±1		
			x5.000	-	-	±1		
			x5.714	-	-	±1		
			x6.667	-	-	±1		
			x8.000	-	-	±1		
			x10.000	-	-	±1		
			x16.000	-	-	±2		
			x1.000	-	-	±1		
	SR _{RPGA}	Rising Vin= 0.1V _{DD} /gain	4.0 V \leq V _{DD} \leq 5.5 V (other than x32)	3.5	-	-		
		SR _{RPGA} to 0.9V _{DE} 10 to 90%	to 0.9V _{DD} /gain. 10 to 90% of	$\begin{array}{l} 4.0 \ V \leqslant V_{DD} \leqslant 5.5 \\ V(x32) \end{array}$	3.0	-	-	
Conversion rate		output voltage amplitude	$2.0~V \leqslant V_{DD} \leqslant 4.0V$	0.5	-	-		
	SR _{FPGA}	Falling Vin= 0.1V _{DD} /gain	4.0 V \leq V _{DD} \leq 5.5 V (other than x32)	3.5	-	-	v/µs	
		SR _{FPGA} 90 to 10% of	$\begin{array}{l} 4.0 \ V \leqslant V_{DD} \leqslant 5.5 \\ V(x32) \end{array}$	3.0	-	-		
		output voltage amplitude	$2.0~V \leqslant V_{DD} \leqslant 4.0V$	0.5	-	-		

(T_A= -40~105°C, 2.5V≤VDD≤5.5V, VSS=0V)

		In full differential	x5	-	-	5	us
			x8	-	-	5	
			x10	-	-	5	
		mode	x16	-	-	10	
			x2.000	-	-	5	
			x2.500	-	-	5	
			x2.667	-	-	5	
			x2.857	-	-	5	us
Quality			x3.077	-	-	5	
Stable	Ŧ	In pseudo- differential mode	x3.333	-	-	5	
operation	I PGA		x3.636	-	-	5	
umenter			x4.000	-	-	5	
			x4.444	-	-	5	
			x5.000	-	-	5	
			x5.714	-	-	5	
			x6.667	-	-	5	
			x8.000	-	-	5	
			x10.000	-	-	5	
			x16.000	-	-	10	
			x1.000	-	-	5	
Operating current	Ipgadd	See 6. 5. 2 Power supply current characteristics					

Note1: The time required from the PGA action enable (PGAEN=1) to fulfill each of the DC and AC style requirements of the PGA.

Remark: Low temperature specification is guaranteed by the design, and is not tested in mass production.

6.8.6 POR circuit characteristics

(T _A = -40~105°C, V	Vss=0V)
--------------------------------	---------

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Detect voltage	VPOR	When the supply voltage rises	-	1.50	1.75	V
	V _{PDR}	When the supply voltage drops	1.37	1.45		V
Minimum pulse width Note1	T _{PW}	-	300	-	-	μs

Note1: This is the time required to reset the POR when V_{DD} falls below V_{PDR}. In addition, when the oscillation of the main system clock (F_{MAIN}) is stopped by setting bit0 (HIOSTOP) and bit7 (MSTOP) of the clock operation status control register (CSC) in the deep sleep mode, this is the time required for POR reset from the time when V_{DD} is lower than 0.7V to the time when it rises above V_{POR}.

Remark: Low temperature specification is guaranteed by the design, and is not tested in mass production.
6.8.7 LVD circuit characteristics

1.	Reset mode, interrupt mode
----	----------------------------

(T_A= -40~105°C, V_{PDR}≤V_{DD}≤5.5V, V_{SS}=0V)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
	N/	When the supply voltage rises	-	4.06	4.14	V
	VLVD0	When the supply voltage drops	3.90	3.98	-	V
		When the supply voltage rises	-	3.75	-	V
	VLVD1	When the supply voltage drops	-	3.67	-	V
		When the supply voltage rises	-	3.13	-	V
	VLVD2	When the supply voltage drops	-	3.06	-	V
		When the supply voltage rises	-	3.02	-	V
	VLVD3	When the supply voltage drops	-	2.96	-	V
Detection	VLVD4	When the supply voltage rises	-	2.92	-	V
voltage		When the supply voltage drops	-	2.86	-	V
	V _{LVD5}	When the supply voltage rises	-	2.81	-	V
		When the supply voltage drops	-	2.75	-	V
	V _{LVD6}	When the supply voltage rises	-	2.71	-	V
		When the supply voltage drops	-	2.65	-	V
	VLVD7	When the supply voltage rises	-	2.61	-	V
		When the supply voltage drops	-	2.55	-	V
		When the supply voltage rises	-	2.50	2.55	V
	VLVD8	When the supply voltage drops	2.40	2.45	-	V
Minimum pulse width	TLW	-	300	-	-	μs
Detection delay	-	-	-	-	300	μs

Remark: Low temperature specification is guaranteed by the design, and is not tested in mass production.

2. Interrupt & reset mode

 $(T_{A}=-40\sim105^{\circ}C, V_{PDR} \leq V_{DD} \leq 5.5V, V_{SS}=0V)$

Item	Symbol		Cond	lition	Min.	Тур.	Max.	Unit					
	V _{LVDC0}		Drop the rese	et voltage	2.40	2.45	-	V					
		LVIS1=1	Rise the reset release voltage	-	2.61	2.66	V						
	VLVDC1		LVIS0=0	Drop the interrupt voltage	2.50	2.55	-	V					
	Vurpes	V _{POC2} =0 V _{POC1} =1	LVIS1=0	Rise the reset release voltage	-	2.71	-	V					
	VLVDC2	V _{POC0} =0	LVIS0=1	Drop the interrupt voltage	-	2.65	-	V					
	Vuuroo		LVIS1=0	LVIS1=0	LVIS1=0	LVIS1=0	LVIS1=0	LVIS1=0	Rise the reset release voltage	-	3.75	-	V
Detection voltage	V LVDC3	LVIS0=0	Drop the interrupt voltage	-	3.67	-	V						
Delection voltage	VLVDD0	Drop the reset voltage				2.75		V					
	VLVDD1 VPOC2=0 VPOC1=1 VPOC0=1	LVIS1=1 LVIS0=0 1 LVIS1=0 1 LVIS0=1	Rise the reset release voltage		2.92	-	V						
			Drop the interrupt voltage	-	2.86	-	V						
			Rise the reset release voltage	-	3.02	-	V						
			Drop the interrupt voltage	-	2.96	-	V						
	Vlvdd3	LVIS1=0	Rise the reset release voltage	-	4.06	4.14	V						
		LVIS0=0	Drop the interrupt voltage	3.90	3.98	-	V						

Remark: Low temperature specification is guaranteed by the design, and is not tested in mass production.

6.8.8 Rise slope characteristics of supply voltage

(T _A = -40~105°C, V _{SS} =0V)						
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Reset time	TRESET	-	-	1	-	ms
Rising slope of supply voltage	SVDD	-	-	-	54	V/ms

Remark: Low temperature specification is guaranteed by the design, and is not tested in mass production.

6.9 Memory characteristics

6.9.1 Flash memory

Symbol	Item	Condition	Min.	Max.	Unit
TPROG	Word program (32bit)	T _A = -40~105°C	-	120	μs
T _{ERASE}	Sector erase (512B)	T _A = -40~105°C	2	3	ms
	Chip erase	T _A = -40~105°C	30	40	ms
Nend	Endurance	T _A = -40~105°C	100	-	Kcycle
T _{RET}	Data retention	100Kcycle ^{Note1} at T _A = 105°C	20	-	year

(T_A= -40~105°C, 2.5V≤VDD≤5.5V, VSS=0V)

Note1: Cycling tests are performed over the entire temperature range.

Remark: Low temperature specification is guaranteed by the design, and is not tested in mass production.

6.9.2 RAM memory

(T _A = -40~105°C.	2.5V≤VDD≤5.5V.\	/SS=0V)
١	1 = 10 100 0,	2.00 < 0.00, (,

Symbol	Item	Condition	Min.	Max.	Unit
VRAMHOLD	RAM hold voltage	T _A = -40~105°C	0.8	-	V

Remark: Low temperature specification is guaranteed by the design, and is not tested in mass production.

6.10 EMS characteristics

6.10.1 ESD eletrical characteristics

Symbol	Item	Test condition	Grade	
	Electrostatic discharge		24	
V ESD(HBM)	(Human-Body Model HBM)	TA= 25 C, JESD22-A114	34	

Remark: It is guaranteed by the design, and is not tested in mass production.

6.10.2 latch-up eletrical characteristics

Symbol	Item	Test condition	Classification
LU	Static latch-up class	$T_A = 25^{\circ}C$, JESD78F	IA

Remark: It is guaranteed by the design, and is not tested in mass production.

7 Package

7.1 LQFP64(10x10mm, 0.5mm)

Symbol		Millimeter		
	Min	Nom	Max	
A	-	-	1.60	
A1	0.05	-	0.15	
A2	1.35	1.40	1.45	
A3	0.59	0.64	0.69	
b	0.17	-	0.26	
b1	0.17	0.20	0.23	
С	0.09	-	0.18	
c1	0.12	0.13	0.14	
D	11.80	12.00	12.20	
D1	9.90	10.00	10.10	
E	11.80	12.00	12.20	
E1	9.90	10.00	10.10	
eB	11.05	-	11.25	
е		0.50BSC		
L	0.45	-	0.75	
L1		1.00REF		
θ	0°	-	7°	

Caution: Package dimensions do not include mold flash or gate burrs.

7.2 LQFP80(12x12mm, 0.5mm)

Symbol -		Millimeter	
	Min	Nom	Max
А	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	-	0.26
b1	0.17	0.20	0.23
С	0.13	-	0.17
c1	0.12	0.13	0.14
D	13.80	14.00	14.20
D1	11.90	12.00	12.10
E	13.80	14.00	14.20
E1	11.90	12.00	12.10
eB	13.05	-	13.25
e		0.50BSC	
L	0.45	0.60	0.75
L1		1.00REF	
θ	0°	-	7°

Caution: Package dimensions do not include mold flash or gate burrs.

7.3 LQFP100(14x14mm, 0.5mm)

Symbol		Millimeter	
Symbol	Min	Nom	Max
A	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
A3	0.59	0.64	0.69
b	0.18	-	0.26
b1	0.17	0.20	0.23
С	0.13	-	0.17
c1	0.12	0.13	0.14
D	15.80	16.00	16.20
D1	13.90	14.00	14.10
E	15.80	16.00	16.20
E1	13.90	14.00	14.10
eB	15.05	-	15.35
е		0.50BSC	
L	0.45	-	0.75
L1		1.00REF	
θ	0°	-	7°

Caution: Package dimensions do not include mold flash or gate burrs.

8 Revision History

Version	Date	Revision content
V0.1.0	March 2023	Initial version
V0.1.1	April 2023	 Added 1.3 Top view and revised the remarks. Modified 6.1 Typical application peripheral circuits. Features: fixed typo, updated description of low speed oscillator. Features: 1.1 Brief introduction: updated description of operating power consumption 2 Product Structure Diagram: added IWDT function, corrected IrDA multiplexing. 4.1 Port functions: updated VCIN function name and deleted note 3 5.1 STAR-MC1 core with ARM® V8-M architecture, 5.4 Linkage controller, 5.5.3 Low-speed on-chip oscillator clock: corrected content 5.7 Low-power mode: added partial power-down deep sleep mode description 5.11 Watchdog timer: added IWDT 5.17 Universal serial communication unit: corrected data length and deleted "Transmit and receive data level setting". 5.2 Analog-to-digital converter (ADC), Programmable Gain Amplifier (PGA), 5.26 Comparator (CMP): updated content 6.5.2 Power supply current characteristics: added conditions for the high-speed on-chip oscillator: FHOCO=16MHz, FIH=128MHz 6.8.5 Programmable gain amplifier (PGA): Condition modification and addition of gain deviation and operation stabilization time 5.17 Universal serial communication unit, 6.7.1 Universal interface unit: SPI chip select input changed to SS
V0.1.2 V0.1.3	September 2023 February 2024	 Updated LCDB function pin description in section 2: Product Structure Diagram The LCD data bus interface is modified to 8-bit "DBD0~DBD7", and the pin connection diagram and pin function description are modified accordingly. Corrected PE07 multiplexing function GTIOC16B to GPIOC16A. Modified the format of the pin map Updated ADC error data in section 6.8.1 Modified 6.1 Typical application peripheral circuits Modified the XT1 clock oscillation starting capacitance value in 6.4.1 Updated TBD parameters in 6.5.2/6.10.2
V0.1.4	September 2024	 Updated power consumption parameters in deep sleep mode Revised the cover page Modified LQFP64 package dimensions and add remarks for other packages